Operating Instructions

Analytical Balances
XPE models

METTLER TOLEDO
StaticDetect

Analytical Balances
XPE models

Operating Instructions

METTLER TOLEDO
Table of Contents

1 **Introduction**
 1.1 Conventions and symbols used in these operating instructions

2 **Safety Information**
 2.1 Explanation of warnings and symbols
 2.2 Product safety information

3 **Design and Function**
 3.1 Overview
 3.1.1 Balance
 3.1.2 Terminal
 3.2 User interface
 3.2.1 Display
 3.2.2 Input dialog boxes
 3.2.3 Firmware
 3.2.3.1 System settings
 3.2.3.2 User profiles
 3.2.3.3 User-specific settings
 3.2.4 Security system

4 **Installation and Putting into Operation**
 4.1 Unpacking
 4.2 Scope of delivery
 4.3 Selecting the location
 4.4 Assembling the balance
 4.5 Draft shield intermediate shelf (Model-dependent)
 4.6 Connecting the balance
 4.7 Setting up the balance
 4.7.1 Operating the glass draft shield
 4.7.2 Performing a simple weighing
 4.7.3 Setting the reading angle and positioning the terminal
 4.7.3.1 Changing the reading angle
 4.7.3.2 Place terminal separately
 4.7.4 Below-the-balance weighing
 4.7.5 Mounting the ErgoClips
 4.7.6 Fitting the SmartGrid cover
 4.8 Transporting the balance
 4.8.1 Transport over short distances
 4.8.2 Transport over long distances

5 **System Settings**
 5.1 Adjustment/Test
 5.1.1 Test/Adjustment - weight settings
 5.1.2 Test sequences
 5.1.2.1 Method
 5.1.2.2 Action if failure
 5.1.3 Tasks
 5.1.3.1 Assigning a test sequence to a task
 5.1.4 ProFACT/int. Adjustment
 5.1.4.1 Definition of parameters for ProFACT
 5.1.5 Automatic adjustment with an external test weight
 5.1.5.1 Definition of parameters for automatic adjustment
 5.1.6 Testing the adjustment with an external test weight
 5.1.6.1 Definition of parameters for testing the adjustment
 5.1.7 Test with WeightLink
 5.1.8 Test history

Analytical Balances
Table of Contents

5.1.9 Protocol – Definition of adjustment and test reports 55
5.2 Info 55
5.3 Standby 56
5.4 Date/Time 56
5.5 Peripherals 57
5.6 Option 59
5.7 Administrator 60
5.7.1 Configuration of the security system 60
5.7.1.1 Changing the administrator ID and password 61
5.7.1.2 Performing a master reset 61
5.7.1.3 Definition of user access rights 62
5.7.1.4 Record of safety-relevant operations 63
5.7.1.5 Reminder function for changing a password 63
5.7.1.6 Definition of the number of users 64
5.7.1.7 Entering the registration code for Remote XPE software 64
5.8 Level sensor 64

6 User-specific Settings
 6.1 Weighing parameters 66
 6.1.1 Weighing mode 67
 6.1.2 Ambient conditions 67
 6.1.3 Measured value release 67
 6.1.4 AutoZero 68
 6.2 User 68
 6.2.1 User name 68
 6.2.2 Language 69
 6.2.3 User ID and password 69
 6.3 Doors 69
 6.4 Terminal 70
 6.4.1 Brightness 71
 6.4.2 Color selection 71
 6.4.3 Beep 72
 6.4.4 Touch function 72
 6.4.5 Touch adjustment 72
 6.4.6 Optical key feedback 72
 6.4.7 Speedread 72
 6.4.8 Status light 73
 6.5 User factory settings 73

7 Weighing Application
 7.1 Weighing application settings 75
 7.1.1 Selecting function keys 77
 7.1.1.1 Function key overview 77
 7.1.2 Selecting SmartTrac 79
 7.1.2.1 SmartTrac dosing guide 79
 7.1.3 Selecting information fields 80
 7.1.4 Specifications for automatic protocol printout 80
 7.1.5 Selecting weighing units 81
 7.1.6 Defining free weighing units 81
 7.1.7 Protocol definition 82
 7.1.8 Specifications for manual protocol printout 84
 7.1.9 Output data formatting (transfer key) 84
 7.1.9.1 Output format 85
 7.1.9.2 Data output to the printer 86
 7.1.10 Definition of identifications and protocol headers 87
 7.1.11 Instructions for processing barcode data 87
 7.1.12 MinWeigh function settings 88
 7.1.13 Tare memory definition and activation 89
7.1.14 Automatic taring function settings 90
7.1.15 Settings for SmartSens and ErgoSens 90
7.1.16 Settings for electrostatic detection 91
7.1.16.1 Defining threshold 92
7.1.17 Settings for the optional anti-static kit (ionizer) 93
7.2 Working with the weighing application 93
7.2.1 Changing the weighing result resolution 93
7.2.2 Taring options 93
7.2.3 Working with the lot counter 94
7.2.4 Working with identifications 95
7.2.5 Weighing-in to a nominal weight 96
7.2.6 Working with the *MinWeight* function 97
7.3 Balance adjustment and testing 98
7.3.1 Adjustment 99
7.3.1.1 Adjustment with internal weight/ProFACT 99
7.3.1.2 Adjustment with external test weight 99
7.3.2 Testing 100
7.3.2.1 Testing the adjustment with internal weight 100
7.3.2.2 Testing the adjustment with external test weight 101
7.3.3 Protocols 101
7.3.3.1 Adjustment and test records (sample records) 102
7.4 Working with the test sequence function 103
7.4.1 Starting a task 103
7.4.1.1 EC - eccentric load test 104
7.4.1.2 RP1 - repeatability test 105
7.4.1.3 RPT1 - repeatability test with tare weight 105
7.4.1.4 SE1 - sensitivity test with one weight 105
7.4.1.5 SE2 - sensitivity test with two weights 106
7.4.1.6 SERVICE - reminder 106
7.4.1.7 SET1 - sensitivity test with tare and one test weight 106
7.4.1.8 SET2 - sensitivity test with tare and two test weights 107

8 Dosing Application 108
8.1 Settings for the dosing application 108
8.1.1 Configuring dosing steps 109
8.1.2 Configuring powder module 109
8.1.2.1 Configuring the front door 110
8.1.2.2 Configuring the autosampler 110
8.1.2.3 Configuring the tapper 111
8.1.3 Configuring liquid module 111
8.1.4 Defining data output 112
8.1.4.1 Specifying the contents of sample or dosing head labels 112
8.1.4.2 Specifying the contents of sample or dosing head protocols 115
8.1.4.3 Defining the target devices for sample or dosing head data 117
8.1.4.4 Defining the output mode for sample or dosing head data 117
8.1.4.5 Specifying the info of the dosing head 118
8.1.5 Defining dosing head definition data 118
8.1.6 General settings 118
8.1.6.1 Specific function keys for dosing 119
8.1.6.2 Configuring the side doors 120
8.1.6.3 Settings for SmartSens and ErgoSens 120
8.1.6.4 Specific info fields for dosing 122

9 Pipette Check Application 123
9.1 Pipette check application settings 124
9.1.1 Specific Quick-Check option settings 124
9.1.2 Specific training option settings 124
9.1.3 Specific RFID recognition beep settings 125
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Modules, Accessories and Spare Parts</td>
<td>256</td>
</tr>
<tr>
<td>21.1 Modules</td>
<td>256</td>
</tr>
<tr>
<td>21.2 Accessories</td>
<td>256</td>
</tr>
<tr>
<td>21.3 Spare parts</td>
<td>267</td>
</tr>
<tr>
<td>22 Appendix</td>
<td>269</td>
</tr>
<tr>
<td>22.1 MT-SICS interface commands and functions</td>
<td>269</td>
</tr>
<tr>
<td>22.2 Procedure for certified balances</td>
<td>269</td>
</tr>
<tr>
<td>22.3 Recommended printer settings</td>
<td>270</td>
</tr>
<tr>
<td>Glossary</td>
<td>272</td>
</tr>
<tr>
<td>Index</td>
<td>274</td>
</tr>
</tbody>
</table>
1 Introduction

Thank you for choosing a METTLER TOLEDO balance.
The balances offers numerous weighing and adjustment options with exceptional operating convenience.
The different models have different characteristics regarding equipment and performance. Special notes in the text indicate where this makes a difference to operation.
METTLER TOLEDO is a leading manufacturer of balances for laboratory and production use as well as analytical measuring instruments. A globally present customer service network with highly trained personnel is always available to assist with the selection of accessories or provide advice on the optimal use of the balance.
The balance conforms to current standards and directives. It supports requirements, work techniques and protocols as specified by all international quality assurance systems, e.g. GLP (Good Laboratory Practice), GMP (Good Manufacturing Practice). The balance has a CE Declaration of Conformity and METTLER TOLEDO, as the manufacturer, is certified to ISO 9001 and ISO 14001. This provides the assurance that your capital investment is protected in the long term by high product quality and a comprehensive service package (repairs, maintenance, servicing, adjustment service).

Finding more information

Software version
The operating instructions are based on the initially installed terminal firmware (software) version V 2.10.

1.1 Conventions and symbols used in these operating instructions

Key and button designations are shown in graphic or text form in square brackets (e.g. [Define]).
These symbols indicate an instruction:
- prerequisites
 1 steps
 2 ...

This symbol indicates press key briefly (less than 1.5 s).

This symbol indicates press and hold key down (longer than 1.5 s).
2 Safety Information

2.1 Explanation of warnings and symbols

Safety notes are indicated by signal words and warning symbols and contain warnings and information about safety issues. Ignoring safety notes can lead to personal injury, damage to the instrument, malfunctions and erroneous results.

Signal words

WARNING for a hazardous situation with medium risk, possibly resulting in severe injuries or death if not avoided.

CAUTION for a hazardous situation with low risk, resulting in damage to the device or the property or in loss of data or minor or medium injuries if not avoided.

Attention (no symbol)
for important information about the product.

Note (no symbol)
for useful information about the product.

Warning symbols

- General hazard
- Electrical shock

Mandatory signs

- Gloves must be worn

2.2 Product safety information

Intended use

Your balance is used for weighing. Use the balance exclusively for this purpose. Any other type of use and operation beyond the limits of technical specifications without written consent from Mettler-Toledo GmbH, is considered as not intended.

It is not permitted to use the instrument in explosive atmosphere of gases, steam, fog, dust and flammable dust (hazardous environments).

General safety information

This balance complies with current industry standards and the recognized safety regulations; however, it can constitute a hazard in use. Do not open the balance housing: The balance contains no user-serviceable parts. In the event of problems, please contact a METTLER TOLEDO representative.

Always operate and use your instrument only in accordance with the instructions contained in this manual. The instructions for setting up your new instrument must be strictly observed.

If the instrument is not used according to these Operating Instructions, protection of the instrument may be impaired and METTLER TOLEDO assumes no liability.

Staff safety

These operating instructions must be read and understood before using the balance. These operating instructions must be retained for future reference.
The balance must not be altered or modified in any way. Only use METTLER TOLEDO original spare parts and accessories.

Safety notes

WARNING

Risk of electric shock

Use only the original universal AC adapter delivered with your balance, and check that the voltage printed on it is the same as your local power supply voltage. Only plug the adapter into a socket which is grounded.

CAUTION

Damage to the balance

1. Only use indoors in dry locations.
2. Do not use pointed objects to operate the touch screen!
 The balance is of a very sturdy design, but is still a precision instrument. It must be handled with care.
3. Do not open the balance:
 The balance contains no user-serviceable parts. In the event of problems, please contact a METTLER TOLEDO representative.
4. Only use METTLER TOLEDO original accessories and peripheral devices for the balance.
 These are specifically designed for the balance.
3 Design and Function

3.1 Overview

3.1.1 Balance

Legend

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terminal</td>
</tr>
<tr>
<td>2</td>
<td>Display "Touch screen"</td>
</tr>
<tr>
<td>3</td>
<td>Operating keys</td>
</tr>
<tr>
<td>4</td>
<td>SmartSens sensors</td>
</tr>
<tr>
<td>5</td>
<td>StaticDetect drip tray for detection of electrostatic charges</td>
</tr>
<tr>
<td>6</td>
<td>Handle/coupling element for operation of the draft shield doors</td>
</tr>
<tr>
<td>7</td>
<td>StaticDetect light</td>
</tr>
<tr>
<td>8</td>
<td>Type designation</td>
</tr>
<tr>
<td>9</td>
<td>Glass draft shield</td>
</tr>
<tr>
<td>10</td>
<td>Handle for operation of the top draft shield door</td>
</tr>
<tr>
<td>11</td>
<td>Guide for top draft shield door and transport handle</td>
</tr>
<tr>
<td>12</td>
<td>Removable clips for feeding cables or tubes</td>
</tr>
<tr>
<td>13</td>
<td>Level indicator/Level sensor</td>
</tr>
<tr>
<td>14</td>
<td>SmartGrid weighing pan</td>
</tr>
<tr>
<td>15</td>
<td>StatusLight</td>
</tr>
<tr>
<td>16</td>
<td>Aux 1 (connection for "ErgoSens", hand or foot switch)</td>
</tr>
<tr>
<td>17</td>
<td>Aux 2 (connection for "ErgoSens", hand or foot switch)</td>
</tr>
<tr>
<td>18</td>
<td>RS232C serial interface</td>
</tr>
<tr>
<td>19</td>
<td>Slot for second interface (optional)</td>
</tr>
<tr>
<td>20</td>
<td>Socket for AC adapter</td>
</tr>
<tr>
<td>21</td>
<td>Fastening point for anti-theft device</td>
</tr>
<tr>
<td>22</td>
<td>Foot screw</td>
</tr>
<tr>
<td>23</td>
<td>Cooling element (model dependent)</td>
</tr>
</tbody>
</table>
3.1.2 Terminal

Key assignments and terminal connection.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SmartSens</td>
</tr>
<tr>
<td>2</td>
<td>Status bar</td>
</tr>
<tr>
<td>3</td>
<td>Select application</td>
</tr>
<tr>
<td>4</td>
<td>Configuration</td>
</tr>
<tr>
<td>5</td>
<td>Print</td>
</tr>
</tbody>
</table>
6 Open/Close

For opening and closing the glass draft shield doors. For convenient right and left-handed operation, one of these keys is provided on both sides of the terminal.

Note
The key can have different functions if a powder module or autosampler is installed.

- If powder module and front door are defined as mounted, the key operates the front door.
- If powder module is defined as mounted and front door is defined as unmounted, the key operates the side doors.
- If autosampler and front door are defined as mounted, the key operates the front door.
- If autosampler is defined as mounted and front door is defined as unmounted, the key turns the autosampler clockwise by 1 magazine = 5 positions.

Refer to your Autosampler Operating Instructions for further information.

7 StatusLight

Indicates the current balance status. The status light shows that the balance is ready to use.

8 Zeroing

This key is used for setting a new zero point manually (only required if the balance is used for normal weighings).

9 Tare

This key is used to tare the balance manually (only necessary for normal weighings). When the balance has been tared, the Net symbol is displayed to indicate that all displayed weights are net.

10 On/Off

For switching the balance on and off (standby mode).

Note
It is recommended not to disconnect the balance from the power supply unless it is not going to be used for an extended period.

11 Open/Close

For opening and closing the glass draft shield doors. For convenient right and left-handed operation, one of these keys is provided on both sides of the terminal.

Note
The key can have different functions if an autosampler is installed.

- If the autosampler is defined as mounted, the key turns the autosampler on counterclockwise by 1 magazine = 5 positions.

12 Settings for user profiles

For defining basic settings for each user profile. These settings apply to all user applications.

13 User profile

This key is used to display a specific user profile. Different settings can be saved in a user profile. This allows the balance to be adjusted to a specific user or weighing task.

14 Home

This key is used to return to the user profile **Home** from any menu level in any application.
3.2 User interface

3.2.1 Display

The illuminated, color display of the terminal is a touch screen, i.e. a touch-sensitive screen. It can be used for displaying data, entering settings and selecting functions by tapping the screen.

Note

Depending on country-specific requirements, non-calibrated decimal places are highlighted on approved balances.

CAUTION

Do not touch the touch screen with pointed or sharp objects!

This may damage the touch screen.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Application name</td>
</tr>
<tr>
<td></td>
<td>Select application. The application menu can be selected by tapping this zone. This menu can also be displayed by pressing [Enter].</td>
</tr>
<tr>
<td>2</td>
<td>Date</td>
</tr>
<tr>
<td></td>
<td>The date can be changed by tapping this zone.</td>
</tr>
<tr>
<td>3</td>
<td>Time</td>
</tr>
<tr>
<td></td>
<td>The time can be changed by tapping this zone.</td>
</tr>
<tr>
<td>4</td>
<td>Status icons</td>
</tr>
<tr>
<td></td>
<td>These status icons indicate special balance statuses (e.g. service due, adjustment required, battery replacement, out of level). If you tap the icon, the function is explained.</td>
</tr>
<tr>
<td>5</td>
<td>Weight value</td>
</tr>
<tr>
<td></td>
<td>Tapping the weight displays a window showing the result in a large format. This is useful for reading a weight from a certain distance.</td>
</tr>
<tr>
<td>6</td>
<td>Weighing unit</td>
</tr>
<tr>
<td></td>
<td>The required weighing unit can be changed by tapping the weighing unit, e.g. from mg to g.</td>
</tr>
<tr>
<td>7</td>
<td>SmartTrac</td>
</tr>
<tr>
<td></td>
<td>SmartTrac is a graphic weighing-in aid, which shows at a glance an already used and still available weighing range.</td>
</tr>
<tr>
<td>8</td>
<td>Function keys</td>
</tr>
<tr>
<td></td>
<td>This area is reserved for Function Keys enabling direct access to frequently required functions and application settings. If more than 5 function keys are activated, these can be selected with the arrow keys.</td>
</tr>
</tbody>
</table>
Large display
By pressing the function key [Display], the weighing result can be displayed larger and still allow the use of the terminal function keys.

Screen saver
If the balance is not used for 15 minutes, the display is automatically dimmed and the pixels are inverted about every 15 seconds. When the balance is used again (e.g. load weight, press key), the display returns to a normal state.

3.2.2 Input dialog boxes
The keyboard dialog box is used to enter characters such as letters, numbers and special characters.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Data field</td>
<td>Displays (entered) alphanumeric and numeric characters.</td>
</tr>
<tr>
<td>2 Keyboard</td>
<td>Data input area</td>
</tr>
<tr>
<td>3 Selection</td>
<td>Select various keyboard layouts.</td>
</tr>
</tbody>
</table>

1 Enter the designation.
2 Confirm with [OK].

Function

- [Delete last character]
 Tap once to place the cursor at the end of the data field.
3.2.3 **Firmware**

The firmware controls all balance functions. It enables the balance to be adjusted to a specific working environment.

The firmware is divided as follows:
- System settings
- User profiles
- User-specific settings
- Applications
- Application-specific settings

Note
A displayed menu can be left at any time by repressing the same menu key.

3.2.3.1 System settings

System settings (e.g. settings for peripheral devices) are independent of the user profiles and applications and apply to the entire weighing system. System settings can be displayed by pressing System or and then the System button.

Navigation: System or

Navigation: > System

1. **System**
2. **Adjust/Test**
3. **Info**
4. **Standby**
5. **Date/Time**
6. **Peripherals**
7. **Levelcontrol**
8. **Administrator**
9. **Exit**

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Title bar</td>
</tr>
<tr>
<td>2</td>
<td>Contents area</td>
</tr>
<tr>
<td>3</td>
<td>Action bar</td>
</tr>
</tbody>
</table>

1. Settings can be changed by tapping the respective button.
2. To leave the settings, tap [Exit].

3.2.3.2 User profiles

User profiles are used to adjust the balance to suit specific applications and personal work techniques or specific weighing tasks. A user profile is a collection of user defined settings that can be selected at the press of a button. The last active user profile is automatically loaded when the balance is switched on.
Design and Function

Analytical Balances

Navigation:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Title bar</td>
</tr>
<tr>
<td>2</td>
<td>Contents area</td>
</tr>
<tr>
<td>3</td>
<td>Home</td>
</tr>
<tr>
<td>4</td>
<td>User profiles</td>
</tr>
</tbody>
</table>

- A user profile can be changed by tapping the respective button.

3.2.3.3 User-specific settings

These settings can be used to adjust the balance to suit the tasks and work techniques of individual users. The settings can be defined separately for each user profile and for the Home profile. When a user profile is selected, the corresponding user-specific settings are automatically loaded.

Navigation:

Applications

Applications are firmware modules for performing specific weighing tasks. The balance is delivered with various applications pre-installed. After switching on the balance, the last active user profile and last used application are loaded. The applications are available under the key. Instructions for working with standard applications are provided in the respective sections.
Application-specific settings

These settings can be used to adjust the applications to suit individual user requirements. The available setting options depend on the selected application. Pressing [] opens the multipage menu with settings for a currently active application. Information on the individual setting options is provided in the section relating to the respective application. Settings can be defined separately for each user profile and for the Home profile. When a user profile is selected, the corresponding application-specific settings are automatically loaded.

Navigation: []

1 Settings can be changed by tapping the respective button.
2 Confirm with [OK].
3 To leave the settings, select [Exit].
4 To change the system settings, tap [System].
3.2.4 Security system

The balance has a comprehensive security system with which individual access rights can be defined at administrator and user level. Settings that may be changed can be defined for each individual user profile. Access to protected menu areas requires the entry of identification (ID) and a password. On delivery of the balance, only the [Administrator] settings in the system settings are protected.

When an ID and password protected menu area is selected, an alphanumeric keyboard is initially displayed for entry of the ID.

⚠️ CAUTION

Remember IDs and passwords!
Protected menu areas cannot be accessed without ID or password.

- Note IDs and passwords and keep them in a safe place.

1 Enter your ID.
 - Case sensitive, tap the [a...z] and [A...Z] button to switch between upper and lower case.
 - To enter numbers, tap the [0...9] button.
 - Incorrect entries can be deleted character by character with the arrow key ⬅️.

 Note
 Entry can be interrupted at any time by tapping [C].

2 After entering the full ID, tap [OK].
 ➞ A further dialog box is displayed for entering the password.

3 Enter the password (for security reasons, this is displayed with asterisks instead of plain text) and confirm with [OK].
 ➞ If the ID and password are correct, the selected menu area is displayed or the required action initiated. If these are incorrect, an error message is displayed with a request to enter them again.
4 Installation and Putting into Operation

4.1 Unpacking

Open the balance packaging. Check the balance for transport damage. Immediately inform a METTLER TOLEDO representative in the event of complaints or missing accessories.

Note
Retain all parts of the packaging. This packaging offers the best possible protection for transporting the balance.

- Use the lifting strap to lift the balance out of the packaging box.

1 Remove the lifting strap (1).
2 Remove the top packaging (2).

1 Remove the operating instructions (3).
2 Remove the set with AC adapter (4), power supply cable, drip tray, SmartGrid, SmartGrid cover, SmartPrep single-use funnel and ErgoClip "Basket" (basket for small weighing objects).
3 Remove the set with draft shield doors (5) and terminal support.
1. Carefully remove the terminal (6) from the bottom packaging.
2. Remove the protective cover.

Note
Since the terminal is connected to the balance with a cable, only withdraw the balance slightly from the packaging in order to remove the protective cover.

1. Place the terminal (6) at the front of the balance.
2. Hold the balance (7) by the guide or handle. Hold the terminal firmly with the other hand. Pull out both components together from the bottom packaging (8).

1. Place the balance with the terminal at the site of use.
2. Remove the cover from the balance.
3. Remove the transport protection (9) of the weighing pan support.

4.2 Scope of delivery

Check the delivery for completeness. The following accessories are part of the standard equipment of the balance:

- Balance with terminal
 - RS232C interface
 - Slot for second interface (optional)
 - Feedthroughs for below-the-balance weighing and for antitheft device
- Set with draft-shield doors and terminal support
- SmartGrid
- SmartGrid cover, chromium-nickel steel
- SmartPrep single-use funnel (2 pieces)
• Drip tray
• AC adapter with country-specific power cable
• Protective cover for the terminal
• Cleaning brush
• ErgoClip "Basket" (basket for small weighing objects)
• Production certificate
• CE declaration of conformity
• Operating instructions or Quick Guide; printed or on CD-ROM, depending on country of use

4.3 Selecting the location

An optimal location will ensure accurate and reliable operation of the balance. The surface must be able to safely take the weight of the balance when fully loaded. The following local conditions must be observed:

Note
If the balance is not horizontal at the outset, it must be leveled during commissioning.

• The balance must only be used indoors and up to a maximum altitude of 4,000 m above sea level.
• Before switching on the balance, wait until all parts are at room temperature (+5 to 40 °C).
 The humidity must be between 10% and 80% non-condensing.
• The power plug must be accessible at all times.
• Firm, horizontal and vibration-free location.
• Avoid direct sunlight.
• No excessive temperature fluctuations.
• No strong drafts.

Further information can be found in Weighing the Right Way.

4.4 Assembling the balance

1. Remove the transport protection (1).
2. Insert the StaticDetect drip tray (2).
 Insert the tray from the front above the bottom plate up to the partition.
1 Insert the SmartGrid from the front.
2 Check that the SmartGrid (1) (2) is correctly hooked in on both sides.

1 Insert the top draft shield door (1) at an angle (slightly below 30 degrees) into the rear guide.
2 Carefully fold the draft shield door (2) downwards, see figure.

- The handles (A) must be folded outwards to mount the side draft shield doors.
1 Mount the draft shield side doors according to the following instructions, see figure below.

2 Mount the side doors at an angle of about 30° in the 2 openings, see following figure.
3 Check that the side doors are correctly mounted as described.
4 Mount the side door so that it clicks in place in the balance. The side door will move easily when correctly mounted.
5 Fold the handle of the side draft shield door inwards.
6 Mount the second draft shield side door. The procedure is identical.
7 Move the side doors fully back.
1. Fit the front draft shield glass (2). Insert the glass at an angle into the bottom of the balance at the front until the two hooks of the front draft shield glass rest on the rollers (1).

2. Move the front draft shield glass upwards until it engages.

1. Insert the terminal support.
2. Place the cable in the guide of the terminal support.
3. Insert the terminal support into the opening in the front draft shield glass.
 - The terminal support must engage with a click.

1. Mount the terminal.
2. Place the terminal in the center of the support.
3. Push the terminal against the balance until it folds down easily at the front of the terminal support.
4. Insert the cable into the balance.

Attention
The balance and terminal are not connected by the terminal support! Always hold the balance and terminal firmly during transport.

Note
The Terminal cable is of sufficient length to allow repositioning of the terminal in the area around the balance.
4.5 Draft shield intermediate shelf (Model-dependent)

The weighing chamber volume can be reduced with the optional intermediate shelf. This enables the balance to indicate weights more quickly. It is also possible to acclimatize the material on the intermediate shelf.

Inserting the intermediate shelf

1. Open all draft shield doors.
2. Lift the top draft shield door (1) at the front and remove from the guide.
3. Place the top draft shield door on a clean surface.
4. Guide the intermediate shelf (2) from above into the guides of the middle guide rail.
5. Position the intermediate shelf at the required height (3).
6. Mount the top draft shield door (1).

See [Assembling the balance ➔ 23].

4.6 Connecting the balance

WARNING

Risk of electric shock

1. To connect the balance, only use the supplied three-core power cable with equipment grounding conductor.
2. Only connect the balance to a three-pin power socket with earthing contact.
3. Only standardized extension cable with equipment grounding conductor must be used for operation of the balance.
4. Intentional disconnection of the equipment grounding conductor is forbidden.

The balance is supplied with an AC adapter and country-specific power cable. The AC adapter is suitable for use with the following voltage range:

100 – 240 V AC, 50/60 Hz.

Attention

- Check whether your local power supply falls within this range. If this is not the case, under no circumstances connect the AC adapter to the power supply, but contact a METTLER TOLEDO representative.
• The power plug must be accessible at all times.
• Prior to use, check the power cable for damage.
• Route the cable in such a way that it cannot be damaged or cause a hindrance when working.
• Ensure that no liquid comes into contact with the AC adapter.

§ Balance and terminal are at the final location.
1 Connect the AC adapter (1) to the connection socket (2) at the rear of the balance.
2 Connect the AC adapter (1) to the power supply.
⇒ The balance performs a self-test after connection to the power supply and is then ready to use.

4.7 Setting up the balance

Switching on the balance
• Balance is connected to the power supply.
• Terminal and balance are interconnected.
 - To switch on, press [].
 ⇒ Display appears.
 ⇒ Balance is ready to use.

Leveling the balance
The balance has a built-in level sensor which permanently monitors correct horizontal alignment.
If the balance is not exactly level, a warning text is generated after switching on the balance with the request to level the balance.
If the level sensor detects incorrect leveling, the status light at the terminal shows red. A warning text is displayed and an audible warning generated. A status icon also appears in the top right corner of the display.
1. To start the leveling assistant, tap \texttt{LevelGuide} in the warning message.
 - Window with level indicator is displayed in real-time.
2. Observe the level indicator on the screen.
 - The air bubble in the level indicator shows red with incorrect alignment.
 - The leveling assistant indicates with red arrows the direction in which the two foot screws at the rear of the balance must be turned.
3. Turn the foot screw until the air bubble is located in the inner circle of the level indicator.
 - The air bubble in the level indicator shows green with correct alignment.
 - The status light at the terminal shows green.
4. Tap \texttt{OK}.
 - A message recommending adjustment of the balance is displayed.
5. Tap \texttt{Adjust.int} to adjust the balance.

4.7.1 Operating the glass draft shield

The draft shield of the balance can be adjusted to the ambient conditions, weighing method and material to be weighed.

The glass draft shield doors can be opened and closed by pressing \texttt{[or]}, with the "SmartSens" sensors or manually.

Try different combinations by moving the handles upwards/inwards and downwards/outwards. We recommend aligning the glass draft shield so that only those parts are opened that are required for loading. The balance then operates faster due to less disturbing air flows than with a fully open draft shield.

Note

It is recommended to make connections when the draft shield is closed.

Motorized operation

The automatic door function opens and closes the doors of the glass draft shield automatically when required.

Example

- Doors open automatically for loading the tare weight when \texttt{[T]} is pressed.
- When a request is made to load the adjustment weight while adjusting the balance, the doors open automatically. The doors close automatically when the weight is loaded.
- The draft shield closes automatically for all weighings to achieve a stable weight indication.
- For different operations (e.g. piece counting), the doors open and close automatically as required by the application.

Note

- Handles are locked.
1. Move the handles for the side doors inwards.
2. Move the handle for the top door into the horizontal position.
 - The door is automatically opened when required.
Manual door operation
The doors must be opened or closed manually. With the [()] or [()] keys, via SmartSens or manually.

- Handles are unlocked.
1. Move the handles for the side doors outwards.
2. Move the handle for the top door into the vertical position.
3. Press [()] or [()].
 - or
 - Move the hand over the SmartSens sensor.
 - The door is opened.

4.7.2 Performing a simple weighing

After commissioning the new balance, the first weighing can be carried out. This will also familiarize you with the operation of the balance.

To perform a simple weighing, only the keys in the lower part of the terminal are required. The balance has separate keys for zeroing [()] and taring [()].

Zeroing

- Press [()].
- Zeroing

After zeroing, all weights also the tare weight apply to this new zero point and the following apply: tare weight = 0, net weight = gross weight = 0.

Taring

Note
A negative weight is not permitted. An error message is generated. When the stability detector icon extinguishes (small ring left of the weight display), the indication is stable. The weight is displayed.

- If a weighing container is used, the balance must first be set to zero.
1. Place the container on the balance.
2. Press [()].
 - The balance is tared.
 - The weight of the container is set as the new tare weight and the previous tare (if available) is overwritten.
 - The Net display signals that all indicated weights are net weights.

4.7.3 Setting the reading angle and positioning the terminal

4.7.3.1 Changing the reading angle

To change the reading angle, fold out both tilting feet.
4.7.3.2 Place terminal separately
The terminal is connected to the balance with a cable. For ease of use, the terminal can be separated from
the balance and positioned in a different location.

Note
The cable can also be led out from the rear of the balance. If this is more convenient, contact a METTLER
TOLEDO representative who will help to modify the balance.
1 Switch off the balance by pressing \(\text{[}] \).
2 Carefully lift the terminal off the terminal support.
The terminal support can be left on the balance or removed.
3 Carefully remove the cable from the balance if this is
possible.
4 Position the balance in the required location.
5 Switch on the balance by pressing \(\text{[}] \).

4.7.4 Below-the-balance weighing
The balance is provided with a hanger for below-the-balance weighing.
1 Switch off the balance with \(\text{[}] \).
2 Disconnect the AC adapter cable at the rear of the balance.
3 Disconnect any interface cables.
4 Push all glass draft shield doors back.
5 Lift the terminal off the terminal support.
6 Disconnect the connecting cable.
7 Place the terminal at the side of the balance.
8 Move the balance over the edge of the table until the opening
is visible from below, see diagram on the left.
9 Slacken the screw until the cover plate can be turned to the
side and the hanger for weighing below the balance is easily
accessible.
10 Fix the cover plate in the new position with the screw, see
diagram on the right.
11 Move the balance back to its original position.
12 Connect the terminal cable.
13 Place the terminal in the terminal support.
14 Move all glass draft shield doors to the front.
15 Fix any interface cables.
16 Plug the AC adapter into the power supply socket at the rear
of the balance.
17 Switch on the balance with \(\text{[}] \).
\(\Rightarrow \) The balance is now ready for mounting the below-the-
balance weighing device.

4.7.5 Mounting the ErgoClips
ErgoClips allow simple weighing directly in tare containers.
The supplied ErgoClip or an optional ErgoClip must be mounted as described below.

Attention
Before mounting an ErgoClip, the balance must be switched off with the \(\text{[O]} \) key.

Important note!
If the balance is not switched off before mounting, the ProFACT function will not be activated.

Reason
The mounted ErgoClip causes the dead load tolerance range of the balance to be exceeded. As a result, the balance does not activate ProFACT so as not to interrupt an assumed weighing process.

When the \(\text{[O]} \) status icon is displayed, this means that: "The balance needs to activate ProFACT", but cannot.

1. Switch off the balance with \(\text{[O]} \).
2. Remove the SmartGrid from the balance.
3. Snap the ErgoClip on to the SmartGrid.
4. Place the SmartGrid with mounted ErgoClip on the balance.
 An optional "Flask" or "Tube" ErgoClip can be used.
5. Switch on the balance with \(\text{[O]} \).

4.7.6 Fitting the SmartGrid cover

Note
For standard operation with conventional tare containers, we do not recommend using this weighing pan. Its use may affect the stabilization time and degree of accuracy. The listed specifications are reached without a SmartGrid cover.

CAUTION

Hand injuries
Take care when handling the SmartGrid cover, the corners and edges are extremely sharp!
 – Gloves must be worn.

To fit the SmartGrid cover, remove the SmartGrid from the weighing chamber.

1. Remove the SmartGrid from the balance.
2. Gently press the SmartGrid cover on to the SmartGrid.
3. Place the SmartGrid with fitted SmartGrid cover on the balance.

4.8 Transporting the balance

Observe the following instructions to transport your balance to a new location.
Switching off the balance
1 Press and hold \[\text{\textdagger}\] until \text{Off} appears in the display.
2 Disconnect the balance from the power supply.
3 Disconnect all interface cables.

4.8.1 Transport over short distances
To move the balance over a short distance to a new location, follow the instructions below.

⚠️ CAUTION
Damage to the balance
Never lift the balance by the glass draft shield or the cooling element, as this can cause damage!

1 Hold the balance by the guide for the top draft shield door with one hand.
2 Hold the terminal with the other hand.
 Since the terminal is not permanently connected to the balance, both the balance and terminal must always be held with one hand.
3 Carefully lift the balance and carry it to its new location. See [Selecting the location > 23].

4.8.2 Transport over long distances
The complete original packaging must be used for transportation or shipment of the balance over long distances or if it cannot be ensured that the balance will be transported upright.

Remove the following parts
1 Lift the terminal (1) out of the terminal support and place it next to the support.
2 Remove the terminal support (2) from the balance.
3 Tilt the draft shield front glass (3) away from the balance.
4 Carefully move the draft shield side doors (4+5) towards the respective handle and remove the side doors from the guide.
5 Lift the front of the top draft shield door (6) and remove it from the guide.
6 If the optional intermediate shelf (9) is installed, lift it at the front and remove it upwards.
7 Carefully lift the front of the SmartGrid (7) and lift it out of the guide.
8 Remove the drip tray (8).
Pack the draft shield, intermediate shelf and terminal support (Items 2-6 and 9)

- Place these parts in the compartments provided in the original packaging.

Note
It is recommended to place paper between the side draft shield glass panels.

Pack the AC adapter, power cord and individual components (Item 7+8)

1. Place the AC adapter and power cord in the packaging.
2. Place the drip tray (8) upside down in the packaging.
3. Place the SmartGrid (7) upside down on the drip tray.
4. Place the ErgoClip "Basket" in the packaging.

⚠️ CAUTION
Damage to the balance
Follow the instructions below to avoid damaging the balance when placing in the packaging.

1. Slide the transport protection along the weighing pan guide.
2. Move the guide of the top draft shield door to the front.
3. Move the handles for the draft shield side doors upwards and slide the doors to the front.
Note

The protective covers supplied with the balance and terminal can be used for packing. These are not shown in the diagrams in order to illustrate how the individual components must be positioned. The use of these protective covers is recommended.

1. Place the terminal on the balance, see diagram.
2. Carefully place the balance in the bottom packaging.

- Remove the terminal and place it in front of the packaging on the table.

- Place the packaging set with the draft shield glass panels in the packaging, see diagram.

1. Place the set with the AC adapter in front of the set with draft shield glass panels.
2. Place the terminal in the packaging as illustrated.
1. Place the top packaging in position.
 ⇒ Ensure that the packaging is correctly positioned.
2. Place the lifting strap around both parts of the packaging, see diagram.
3. Tighten the strap around the packaging.
 ⇒ Lift the packed balance by the lifting strap and place in the transport box.
5 System Settings

Navigation: [Configuration] or [User] > [System]

This section describes the procedure for adapting the balance to suit specific requirements. The system settings apply to the entire weighing system and therefore to all user profiles and applications.

- The system settings can be displayed by pressing [Configuration] and subsequently the [System] button.

or

Press [User] and subsequently the [System] button.

⇒ The [System] window is displayed.

Printing all System settings

- A printer is connected and activated.

- If you are in the root of the System settings, press [Print].

Note

- The detail of the protocol depends on the point at which printout is activated in the system settings.

When [Configuration] is pressed in the uppermost level of the system settings, all system settings are recorded. If printing is started in the [Peripherals] submenu for example, only the settings for the peripheral devices are recorded.

- The Test/Adj. Weights, Test Sequences and Tasks submenus in the [Adjust/Test] menu must be printed separately.

Example: Printout

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weekdays</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tuesday</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wednesday</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thursday</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Friday</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Saturday</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sunday</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time 1</td>
<td>9:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ProFACT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time 2</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ProFACT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time 3</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ProFACT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time</td>
<td></td>
</tr>
</tbody>
</table>

System settings overview

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjust/Test</td>
<td>Settings for adjustment and test functions for verification of adjustments.</td>
</tr>
<tr>
<td>Info</td>
<td>Display/printing of balance information.</td>
</tr>
</tbody>
</table>
System Settings

Analytical Balances

- **Standby**

 Settings for the standby mode.

- **Date/Time**

 Entry of date and time and selection of required display formats.

- **Peripherals**

 Configuration of interface for various peripheral devices.

- **Option**

 Configuration of the optional interface.

- **Administrator**

 Configuration of the security system of the balance with allocation of access rights and passwords for weighing functions and menus.

- **Levelcontrol**

 Settings for the built-in level sensor.

Menu structure

<table>
<thead>
<tr>
<th>Main menu</th>
<th>Submenu</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjust/Test</td>
<td>Test/Adj. Weights</td>
<td>See [Settings for adjustments and tests 39]</td>
</tr>
<tr>
<td></td>
<td>Test Sequences</td>
<td>See [Test sequences 41]</td>
</tr>
<tr>
<td></td>
<td>Tasks</td>
<td>See [Tasks 49]</td>
</tr>
<tr>
<td></td>
<td>ProFACT / int. Adj.</td>
<td>See [ProFACT/int. Adjustment 51]</td>
</tr>
<tr>
<td></td>
<td>Autom. ext. Adjust.</td>
<td>See [Automatic adjustment with an external test weight 52]</td>
</tr>
<tr>
<td></td>
<td>Autom. ext. Test</td>
<td>See [Testing the adjustment with an external test weight 53]</td>
</tr>
<tr>
<td></td>
<td>WeightLink</td>
<td>See [Test with WeightLink 53]</td>
</tr>
<tr>
<td></td>
<td>Test History</td>
<td>See [Test history 54]</td>
</tr>
<tr>
<td></td>
<td>Protocol</td>
<td>See [Protocol – Definition of adjustment and test reports 55]</td>
</tr>
<tr>
<td>Info</td>
<td>Balance ID</td>
<td>See [Info 55]</td>
</tr>
<tr>
<td></td>
<td>Info</td>
<td></td>
</tr>
<tr>
<td>Standby</td>
<td>Standby</td>
<td>See [Standby 56]</td>
</tr>
<tr>
<td>Date/Time</td>
<td>Date Format</td>
<td>See [Date/Time 56]</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time Format</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Peripherals</td>
<td>Printer</td>
<td>See [Peripherals 57]</td>
</tr>
<tr>
<td></td>
<td>Host</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LabX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LabX Controlled Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tablet Feeder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Secondary Display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bar Code</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFID / Quantos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Label Printer</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>DHCP</td>
<td>See [Option 59]</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>IP-Address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subnet Mask</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard Gateway</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain Name Server</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hostname</td>
<td></td>
</tr>
<tr>
<td>Administrator</td>
<td>Protected Area: Enter Administrator ID.</td>
<td>See [Administrator 60]</td>
</tr>
<tr>
<td></td>
<td>Protected Area: Enter Admin. Password.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Administrator ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Administrator Password</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Reset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Home Rights</td>
<td></td>
</tr>
<tr>
<td></td>
<td>User 1 Rights ... User 7 Rights</td>
<td></td>
</tr>
<tr>
<td></td>
<td>History</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Passw. Change Date</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of users</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remote appl. reg.</td>
<td></td>
</tr>
<tr>
<td>Levelcontrol</td>
<td>Off</td>
<td>See [Level sensor 64]</td>
</tr>
<tr>
<td></td>
<td>Levelcontrol</td>
<td></td>
</tr>
</tbody>
</table>

5.1 Adjustment/Test

Introduction for adjustment and tests

This section applies to the configuration of the balance for carrying out adjustments and tests.
- The balance is assembled and installed as stated in the operating instructions.
- The balance is leveled.
1. Connect the printer to printout settings or reports.
2. Activate the printer as an output device in the peripheral device settings.

Principles for carrying out adjustments and tests

Balances play a decisive role in research, development, quality assurance and production. Weighing errors cost time and money and non-compliance with legal requirements can be detrimental to health. Good Weighing Practice™ (GWP®) is the science based global weighing standard for the efficient life cycle management of weighing systems. The risk-based approach allows you to improve control of your whole measuring process, which in turn helps to avoid costly out of specification results. Our Feasible Cost Savings Optimized routine testing based on your risk management ensures consistently good quality in critical applications. Additionally, a sound testing scheme saves costs by eliminating unnecessary tests in lower risk processes.

Test Manager was specially developed, as part of our balance firmware, to simplify routine tests. In combination with GWP® Verification, efficient balance testing is ensured and specific audit requirements can be fulfilled more easily.

► www.mt.com/GWPVerification
Test Manager

Test Manager is a collection of security functions for the balance. These individually programmable functions help to maintain measuring accuracy via e.g. routine testing of the balance with external test weights. By providing active support with respect to test requests and predefined guided sequences will ensure that outstanding tests are not forgotten and complex tasks such as repeatability tests can be carried out easily.

Additional functions were developed to prevent measuring errors. These are, e.g. temperature sensors that can register possible temperature changes in the measuring cell and initiate adjustment by using internal weights which facilitate and maintain consistent accuracy.

The flexibility and customization of the test manager results in user guidance and appropriate messages, while performing specific operations, followed by complete records and documentation via printout or in conjunction with PC software.

The configuration process

In order to prepare the balance for a routine test and adjustment, a straightforward 3-stage process is required:

1. Register the test weights.
 ⇒ Information relating to all test weights is stored in a balance database.
2. Define the test sequence.
 ⇒ Describes the type of test (method) and the test weight and tolerance to be carried out.
3. Carry out the test sequence.
 ⇒ The task defines when and how the test sequence must be started and carried out.

Documentation and storage

To ensure the traceability of adjustments and tests, it is important to print the settings and periodically the results of the test history.

The results are stored in the test history up to a maximum of 120 entries. When this limit is reached, the oldest results are overwritten.

Each time the test sequence is changed, the version number is increased and displayed in the right top corner of the display. It is recommended to print and file each new version in a folder.

A complete list of individual settings can be printed by pressing the [] key while the respective menu is open.

Settings for adjustments and tests

Navigation: [System] > [Adjust/Test]

This section describes all menu options and parameters relating to adjustment and testing of the balance.

For carrying out adjustments and tests, see [Balance adjustment and testing 98].

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/Adj. Weights</td>
<td>Define the test weights and parameters for adjustment. Procedures for testing or adjustment.</td>
<td>See [Test/adjustment - weight settings 40]</td>
</tr>
<tr>
<td>Test Sequences</td>
<td>Defines the parameters of a test sequence for testing and behavior of the balance.</td>
<td>See [Test sequences 41]</td>
</tr>
<tr>
<td>Tasks</td>
<td>Defines the task of a test sequence.</td>
<td>See [Tasks 49]</td>
</tr>
<tr>
<td>Autom. ext. Adj.</td>
<td>Automatic external adjustment.</td>
<td>See [Automatic adjustment with an external test weight 52]</td>
</tr>
<tr>
<td>Autom. ext. Test</td>
<td>Adjustment testing.</td>
<td>See [Testing the adjustment with an external test weight 53]</td>
</tr>
</tbody>
</table>
5.1.1 Test/Adjustment - weight settings

Navigation: [Home] > [System] > [Adjust/Test] > Test/Adj. Weights

This menu can be used to enter the designations or numbers of the certificate supplied with the respective test weight. This enables each external test weight to be clearly assigned to a specific certificate. Up to 12 external test weights can be configured. These test weights are used to carry out external tests and adjustments.

1. Tap [Define].
 → Test/Adj. Weights window is displayed.
2. Select an undefined weight or the name of the weight, the parameters of which are to be updated.
3. Tap [Define].
4. Change the settings and confirm with [OK].
 → The defined weights are available for selection in the test sequences.

Note
When the weight list is displayed, all parameters of the 12 test weights can be printed out with [Print].

Test/Adj. Weight 1...Test/Adj. Weight12

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Defines a name for a test weight (max. 20 characters).</td>
<td>Any (Test/Adj. Weights)*</td>
</tr>
<tr>
<td>Weight ID</td>
<td>Defines the identification (ID) of the weight (max. 20 characters).</td>
<td>Any</td>
</tr>
<tr>
<td>Class</td>
<td>Defines the class of the weight.</td>
<td>E1*</td>
</tr>
<tr>
<td>Certificate No.</td>
<td>Defines the certificate number of the external test weight used (max. 20 characters).</td>
<td>Any</td>
</tr>
<tr>
<td>Weight Set No.</td>
<td>Defines the identification number of the set of weights if the test weight belongs to a set of weights (max. 20 characters).</td>
<td>Any</td>
</tr>
<tr>
<td>Actual Value</td>
<td>Weight from the weight certificate. Irrespective of the type of balance, the full value should be taken over without taking the decimal places of the balance into account (e.g. 20.00124 g).</td>
<td>Weight (0 g)*</td>
</tr>
<tr>
<td>Next Recalibration</td>
<td>Entry of the date of the next weight calibration.</td>
<td>DD.MM.YYYY (31.12.2099)*</td>
</tr>
</tbody>
</table>

* Factory setting
5.1.2 Test sequences

Navigation: [System] > [Adjust/Test] > Test Sequences

Test sequences define which test is carried out with which test weight. The user is guided through.

Note
The test should be carried out according to GWP® or another QM systems.

When Test Sequences is selected, a list of test sequences, the parameters of which can be adapted or overwritten, appears.

Up to 12 test sequences can be defined.

Note
In the test sequence you define among others the type of the test (= Method) and the weights to be used for this method. Before these weights can be selected, they have to be defined in [System] > [Adjust/Test] > Test/Adj. Weights.

- The test weights are defined.

1 Tap [Define].
 - Test Sequences window appears.

2 Select an undefined or existing test sequence, for example Test Sequence 1 to be configured or adapted.

3 Tap [Define].
 - Test Sequence window appears.

4 Enter the designations and parameters and confirm with [OK].
 - The test sequence is stored in the Test Sequence menu.
 - Each time a test sequence is stored, the version number is increased by 1. The version number is shown at the top right of the display.

The arrow buttons can be used to page forward or back to a menu page.

Note
When the test sequence list is displayed, all parameters of the 12 test sequences can be printed with [Print].

Configuration of test sequence parameters

Navigation: [System] > [Adjust/Test] > Test Sequences > Test Sequence 1

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Defines a designation for a test sequence (max. 20 characters).</td>
<td>Any (Test Sequence 1)*</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choose a comprehensible name to enable clear identification and easy traceability.</td>
<td></td>
</tr>
</tbody>
</table>
Preparation Instructions
Selection of preparatory instructions.

None = no preparatory instructions are displayed in the test sequence.
This is normally used for test sequences requiring no user actions, e.g. test sequences with the **SERVICE** method.

Standard = the following preparatory instructions are displayed. These correspond to the typical SOP standard.
1. Clean the weighing pan.
2. Level the balance.
3. Switch on the printer.
4. Have the test weights ready.
5. Have the weight tweezers/fork ready.

Method
Describes the type of test to be carried out and defines the main purpose of a test sequence. The test weights and respective tolerances to be used must be defined as part of the method.

Action if Failure
Defines how the balance should react if the test fails or is aborted.

Instructions if Failure
Defines the instructions. This setting is independent of the parameters **Action if Failure** and is displayed each time a test sequence fails.

None = the test sequence **Name** has failed.

Standard = the test sequence **Name** has failed.

The balance is outside the defined tolerances.
Contact a responsible person within your company or METTLER TOLEDO service.

Code to Unblock
System release.

Note
If **Action if Failure None** is selected, a failed test sequence will never block the balance.

Entry in GWP History
Defines whether the test result is stored in the GWP history.

Yes = result of test sequence is stored.

No = result of test sequence is not stored.

Note
If 120 entries are exceeded, the oldest result is overwritten with the newest result.

* Factory setting

For more details about **Method see** [Method > 42], and **Action if Failure see** [Action if failure > 48]

5.1.2.1 Method

Navigation: [Page] > [System] > [Adjust/Test] > Test Sequences > Test Sequence 1 > Method

A method describes the type of test to be carried out and defines the main purpose of a test sequence. The test weights and respective tolerances to be used must be defined as part of the method. There are 8 different methods available.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No method has been selected.</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>Method for eccentric load test.</td>
<td>See [EC - eccentric load test > 43]</td>
</tr>
</tbody>
</table>
RP1 | Method for repeatability test. | See [RP1 - repeatability test 44]
RPT1 | Method for repeatability test with tare weight. | See [RPT1 - repeatability test with tare weight 44]
SE1 | Method for sensitivity test with one test weight. | See [SE1 - sensitivity test with one weight 46]
SE2 | Method for sensitivity test with two test weights. | See [SE2 - sensitivity test with two weights 46]
SERVICE | Service method. | See [SERVICE - reminder 46]
SET1 | Method for sensitivity test with tare weight and one test weight. | See [SET1 - sensitivity test with tare and one test weight 47]
SET2 | Method for sensitivity test with tare weight and two test weights. | See [SET2 - sensitivity test with tare and two test weights 47]

5.1.2.1.1 EC - eccentric load test

Navigation: [System] > [Adjust/Test] > Test Sequences > Test Sequence 1 > Method > [EC]

The purpose of the EC method (eccentric load test) is to ensure that every eccentric load deviation is within the necessary user SOP tolerances. The method uses two test tolerances (method tolerances), \(s T_1 \) and \(s T_2 \), which are applied to the test result. They work exactly the same as the weight tolerances \(T_1 \) and \(T_2 \).

Test Weight

Navigation: [System] > [Adjust/Test] > Test Sequences > Test Sequence 1 > Method > [EC] > Test Weight

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/Adj. Weight</td>
<td>Selects the predefined test weight. Test/Adj. Weight 1 … Test/Adj. Weight12 = defined in Test/Adj. Weights menu item.</td>
<td>Test/Adj. Weight 1</td>
</tr>
<tr>
<td>Tolerances</td>
<td>It is recommended to set the test weight tolerances to 100%. Because for this kind of test the test tolerance is relevant.</td>
<td>Tolerance 1</td>
</tr>
</tbody>
</table>

Tolerances for eccentric load deviation

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance EC T1</td>
<td>Defines the tolerance EC T1 for the eccentric load deviation. If the result tolerance (method tolerance) EC T1 is exceeded, the eccentric load test is passed with a warning.</td>
<td>Any (0.10 g)*</td>
</tr>
<tr>
<td>Name EC T1</td>
<td>Defines a designation for EC T1 (max. 20 characters).</td>
<td>Any (Warn Limit)*</td>
</tr>
<tr>
<td>Tolerance EC T2</td>
<td>Defines the tolerance EC T2 for the eccentric load deviation. If the result tolerance (method tolerance) T2 is exceeded, the eccentric load test fails.</td>
<td>Any (0.10 g)*</td>
</tr>
<tr>
<td>Name EC T2</td>
<td>Defines a designation for EC T2 (max. 20 characters).</td>
<td>Any (Control Limit)*</td>
</tr>
</tbody>
</table>
5.1.2.1.2 RP1 - repeatability test

The RP1 method calculates the mean and standard deviation (Symbol s) of a series of measurements with a single test weight in order to determine the repeatability of the balance. The method uses two result tolerances (method tolerances), s T1 and s T2, which are applied to the test sequence result. They function similar to T1 and T2.

Test Weight

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/Adj. Weight</td>
<td>Selects the predefined test weight.</td>
<td>Test/Adj. Weight 1</td>
</tr>
<tr>
<td></td>
<td>Test/Adj. Weight 1 … Test/Adj. Weight12 = defined in Test/Adj. Weights menu item.</td>
<td></td>
</tr>
<tr>
<td>Tolerances</td>
<td>It is recommended to set the test weight tolerances to 100%. Because for this kind of test the test tolerance is relevant.</td>
<td>Tolerance T1</td>
</tr>
</tbody>
</table>

Tolerances (s) for repeatability test

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance s T1</td>
<td>Defines the tolerance s T1 for the repeatability test. If the tolerance s T1 is exceeded, the repeatability test is passed with a warning.</td>
<td>Any (0.000 g)*</td>
</tr>
<tr>
<td>Name s T1</td>
<td>Defines a designation for s T1 (max. 20 characters).</td>
<td>Any (Warn Limit)*</td>
</tr>
<tr>
<td>Tolerance s T2</td>
<td>Define the tolerance s T2 for the repeatability test. If the tolerance s T2 is exceeded, the repeatability test fails.</td>
<td>Any (0.000 g)*</td>
</tr>
<tr>
<td>Name s T2</td>
<td>Defines a designation for s T2 (max. 20 characters).</td>
<td>Any (Control Limit)*</td>
</tr>
</tbody>
</table>

* Factory setting

Number of Repetitions

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Repetitions</td>
<td>Defines the number of weight measurements of a series.</td>
<td>2 … 15 (10)*</td>
</tr>
</tbody>
</table>

* Factory setting

5.1.2.1.3 RPT1 - repeatability test with tare weight
The RPT1 method calculates the mean and standard deviation (Symbol s) of a series of measurements with two test weights in order to determine the repeatability. In contrast to the RP1 method, a second test weight is used to simulate the use of a tare container.

The method uses two test tolerances (method tolerances), \(s_{T1} \) and \(s_{T2} \), which are applied to the test sequence result. They work exactly the same as the weight tolerances \(T_{1} \) and \(T_{2} \).

Tare Weight

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tare Weight</td>
<td>Selects the predefined test weight corresponding to the tare container weight. Test/Adj. Weight 1 ... Test/Adj. Weight12 = defined in Test/Adj. Weights menu item.</td>
<td>Test/Adj. Weight 1</td>
</tr>
<tr>
<td>Tolerances</td>
<td>It is recommended to set the tare weight tolerances to 100%.</td>
<td>Tolerance T1</td>
</tr>
</tbody>
</table>

Test Weight

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/Adj. Weight</td>
<td>Selects the predefined test weight. Test/Adj. Weight 1 ... Test/Adj. Weight12 = defined in Test/Adj. Weights menu item.</td>
<td>Test/Adj. Weight 1</td>
</tr>
<tr>
<td>Tolerances</td>
<td>It is recommended to set the test weight tolerances to 100%. Because for this kind of test the test tolerance is relevant.</td>
<td>Tolerance T1</td>
</tr>
</tbody>
</table>

Tolerances (s) for repeatability test

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance (s_{T1})</td>
<td>Defines the tolerance (s_{T1}) for the repeatability test. If the tolerance (s_{T1}) is exceeded, the repeatability test is passed with a warning.</td>
<td>Any ((0.000 \text{ g})^*)</td>
</tr>
<tr>
<td>Name (s_{T1})</td>
<td>Defines a designation for (s_{T1}) (max. 20 characters).</td>
<td>Any (\text{(Warn Limit)}^*)</td>
</tr>
<tr>
<td>Tolerance (s_{T2})</td>
<td>Define the tolerance (s_{T2}) for the repeatability test. If the tolerance (s_{T2}) is exceeded, the repeatability test fails.</td>
<td>Any ((0.000 \text{ g})^*)</td>
</tr>
<tr>
<td>Name (s_{T2})</td>
<td>Defines a designation for (s_{T2}) (max. 20 characters).</td>
<td>Any (\text{(Control Limit)}^*)</td>
</tr>
</tbody>
</table>

* Factory setting

Number of Repetitions

You can define the following parameters:
5.1.2.1.4 SE1 - sensitivity test with one weight

Navigation:

```
> [System] > [Adjust/Test] > Test Sequences > Test Sequence 1 > Method > [SE1]
```

The SE1 method tests the sensitivity of the balance with one test weight.

Test Weight

Navigation:

```
> [System] > [Adjust/Test] > Test Sequences > Test Sequence 1 > Method > [SE1] > Test Weight > Test/Adj. Weight
```

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/Adj. Weight</td>
<td>Selects the predefined test weight. Test/Adj. Weight 1 ... Test/Adj. Weight12 = defined in Test/ Adj. Weights menu item.</td>
<td>Test/Adj. Weight 1</td>
</tr>
<tr>
<td>Tolerances</td>
<td>The test tolerances are used for the sensitivity test.</td>
<td>Tolerance T1</td>
</tr>
</tbody>
</table>

5.1.2.1.5 SE2 - sensitivity test with two weights

Navigation:

```
> [System] > [Adjust/Test] > Test Sequences > Test Sequence 1 > Method > [SE2]
```

The SE2 method tests the sensitivity of the balance with two test weights.

Test Weight 1 and Test Weight 2

Navigation:

```
> [System] > [Adjust/Test] > Test Sequences > Test Sequence 1 > Method > [SE2] > Test Weight 1 or Test Weight 2 > Test/Adj. Weight
```

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/Adj. Weight</td>
<td>Selects the predefined test weight. Test/Adj. Weight 1 ... Test/Adj. Weight12 = defined in Test/ Adj. Weights menu item.</td>
<td>Test/Adj. Weight 1</td>
</tr>
<tr>
<td>Tolerances</td>
<td>The test tolerances are used for the sensitivity test.</td>
<td>Tolerance T1</td>
</tr>
</tbody>
</table>

5.1.2.1.6 SERVICE - reminder

Navigation:

```
> [System] > [Adjust/Test] > Test Sequences > Test Sequence 1 > Method > [SERVICE]
```

The SERVICE method is more a reminder than a method. It is normally set to perform regular checks of various data (dates) in the background. It is used e.g. as a reminder for the next service date or MinWeigh date. The date is checked on a regular basis and a message appears when the defined task is due. The SERVICE method can also be used as early pre-warning.

The SERVICE method can also only be used for the display of Preparation Instructions. For example, the user is requested to level the balance on a daily basis. In this special case, the Preparation Instructions must be set in the test sequence setting to Standard. Ensure that no elements are selected in the method status.
Note
To enable this test sequence to be ended without user actions, **Preparation Instructions** must be set in the test sequence to **None**.
You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Defines the reminder target. This is either an event (Battery Change, Service...) or a defined task. Values can be ☐ (deactivated) or ☑ (activated).</td>
<td>Battery Change</td>
</tr>
<tr>
<td>Early Warning Alert</td>
<td>Defines the pre-warning time. Note With one SERVICE reminder, several dates can be checked simultaneously. The same pre-warning time applies to all dates however. If different pre-warning times are necessary, several SERVICE methods must be defined.</td>
<td>1 … 365 days (7 days)*</td>
</tr>
</tbody>
</table>

* Factory setting

5.1.2.1.7 SET1 - sensitivity test with tare and one test weight

Navigation: [ESP] > [System] > [Adjust/Test] > Test Sequences > Test Sequence 1 > Method > [SET1]

The **SET1** method tests the sensitivity of the balance with two test weights. The first test weight is used to simulate a tare container.

Tare Weight

Navigation: [ESP] > [System] > [Adjust/Test] > Test Sequences > Test Sequence 1 > Method > [SET1] > Tare Weight > Test/Adj. Weight

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tare Weight</td>
<td>Selects the predefined test weight corresponding to the tare container weight. Test/Adj. Weight 1 … Test/Adj. Weight12 = defined in Test/Adj. Weights menu item.</td>
<td>Test/Adj. Weight 1</td>
</tr>
<tr>
<td>Tolerances</td>
<td>It is recommended to set the tare weight tolerances to 100%.</td>
<td>Tolerance T1</td>
</tr>
</tbody>
</table>

Test Weight

Navigation: [ESP] > [System] > [Adjust/Test] > Test Sequences > Test Sequence 1 > Method > [SET1] > Test Weight > Test/Adj. Weight

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/Adj. Weight</td>
<td>Selects the predefined test weight. Test/Adj. Weight 1 … Test/Adj. Weight12 = defined in Test/ Adj. Weights menu item.</td>
<td>Test/Adj. Weight 1</td>
</tr>
<tr>
<td>Tolerances</td>
<td>The test tolerances are used for the sensitivity test.</td>
<td>Tolerance T1</td>
</tr>
</tbody>
</table>

5.1.2.1.8 SET2 - sensitivity test with tare and two test weights
The SET2 method tests the sensitivity of the balance with three test weights. The first test weight (tare weight) is used to simulate a tare container.

Test Weight 1 and Test Weight 2

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/Adj. Weight</td>
<td>Selects the predefined test weight. The test/adj. weight is defined</td>
<td>Test/Adj. Weight 1</td>
</tr>
<tr>
<td>Tolerances</td>
<td>The test tolerances are used for the sensitivity test.</td>
<td>Tolerance T1</td>
</tr>
</tbody>
</table>

Tare Weight

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tare Weight</td>
<td>Selects the predefined test weight corresponding to the tare container</td>
<td>Test/Adj. Weight 1</td>
</tr>
<tr>
<td>Tolerances</td>
<td>It is recommended to set the tare weight tolerances to 100%.</td>
<td>Tolerance T1</td>
</tr>
</tbody>
</table>

5.1.2.2 Action if failure

Defines how the balance should react if the test fails or is aborted. There are 3 types of behavior.

Warning

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning Message</td>
<td>Defines the warning dialog for the user. The user can work as normal, but</td>
<td>Standard*</td>
</tr>
<tr>
<td></td>
<td>receives repeated warnings that the test sequence has failed. The user is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>requested to restart the test sequence.</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>= the test sequence Name has failed. 1. To start the test sequence again,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tap [Start].</td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td>= the test sequence Name has failed. Follow the steps below: 1. Check the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weighing parameters. 2. To start the test sequence again, tap [Start].</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>If the [Start] button is grayed, the current user is not authorized to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>start the test sequence.</td>
<td></td>
</tr>
</tbody>
</table>
Time Interval
Defines the time (in hours) until the warning is displayed again.

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 1000 h</td>
</tr>
<tr>
<td>(1 h)</td>
</tr>
</tbody>
</table>

Max. Number Of Warnings
Defines the maximum permitted number of warnings for this test sequence. When the maximum number is reached and the test sequence was not successfully completed, the balance is blocked.

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 1000</td>
</tr>
<tr>
<td>(1)</td>
</tr>
</tbody>
</table>

Action after Failure
Defines how a test sequence (already in warning mode) should behave if it fails again or is aborted during the method sequence.

- **None**: The test sequence is aborted and restarted after lapse of the next warning interval.
- **See Max. Number Of Warnings**
 - **1 Attempt**, **2 Attempts** or **3 Attempts**: In contrast to None, the balance does not return to the warning mode. The test sequence must be passed within the number of attempts defined here or the balance will be blocked.
 - **Until Passed**: Permits an unlimited number of attempts. The balance does not return to the warning mode.

Note
If **GWP History** is activated, only the last result and number of attempts are stored.

Attempt
Defines how often a test may be carried out until it is passed.

- **1, 2 or 3**: The test must be passed within the defined number of attempts or the balance is blocked.
- **In contrast to Warning**, it is not possible to continue to work between attempts, but only when the test has been passed.
- **Until Passed**: Permits an unlimited number of attempts.

Note
If **GWP History** is activated, only the last result and number of attempts are stored.

Tasks
Tasks define when a test sequence must be carried out and how it is started.

Up to 12 tasks can be defined.
- The test sequence is defined in the **Test Sequence** menu.

1 Tap [Define].

⇒ The **Tasks** window appears.
2 Select the test sequence for the task.
 ⇒ The Task State window appears.
 ⇒ When a test sequence is assigned to a task, the name appears in the task list.
3 Tap [On] and subsequently the associated button.
 ⇒ Task window appears.
4 Define the settings and confirm with [OK].
 ⇒ The date for carrying out the next test sequence is recalculated.
 ⇒ The date for carrying out the next test is calculated at the end of each completed test sequence.
 The arrow buttons can be used to page forward or back to a menu page.

Note
When the task list is displayed, all parameters of the 12 tasks can be printed with [Print].

Navigation: [Main] > [System] > [Adjust/Test] > Tasks > Task 01 ... Task 12
The task can be activated or deactivated in the task status window. Deactivated tasks are ignored by the system. Activated tasks can be changed or supplemented.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 01</td>
<td>Defines the task status. On: Assigns a test sequence to a task.</td>
<td>Off*</td>
</tr>
</tbody>
</table>

* Factory setting

5.1.3.1 Assigning a test sequence to a task

Navigation: [Main] > [System] > [Adjust/Test] > Tasks > Task 01 > [On]

When Test Sequence is selected, the user can assign a test sequence to a task from a list of already defined test sequences.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sequence</td>
<td>Selects a predefined test sequence. Test Sequence 1 ... Test Sequence 12 = defined in Test Sequences menu item.</td>
<td>Task 01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Task 03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Task 05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Task 07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Task 09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Task 11</td>
</tr>
<tr>
<td>Starting Method</td>
<td>Defines the way how a test sequence is started.</td>
<td>Manual</td>
</tr>
<tr>
<td></td>
<td>Interval: Define Interval Start Time : (08:00)*</td>
<td>Interval : (1 day)*.</td>
</tr>
<tr>
<td>Defined Days</td>
<td>Defines the days on which the task can be performed. Note: Test sequences with Starting Method > Manual or On User Change or Interval appear in the test selection list only on the days defined here. If the day on which a test sequence is due is not defined, the test sequence is postponed until the next. Values can be ☐ (deactivated) or ☑ (activated)*.</td>
<td>Monday*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wednesday*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Friday*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sunday*</td>
</tr>
<tr>
<td>Defined Users</td>
<td>Defines the users authorized to start the task. Note: Test sequences with Starting Method > Manual or On User Change or Interval appear in the test selection list only for the defined users selected here. If the user is not defined, the test sequence is postponed until a defined user registers. Values can be ☐ (deactivated) or ☑ (activated)*.</td>
<td>Home*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User 2*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User 4*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User 6*</td>
</tr>
</tbody>
</table>
5.1.4 ProFACT/int. Adjustment

Navigation: [_system] > [Adjust/Test] > ProFACT / int. Adj.

ProFACT stands for Professional Fully Automatic Calibration Technology and offers fully automatic internal balance adjustment with an internal weight, based on preselected time and/or temperature criteria.

ProFACT / int. Adj. is switched on by default and can be switched off as required.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
</table>

5.1.4.1 Definition of parameters for ProFACT

Navigation: [_system] > [Adjust/Test] > ProFACT / int. Adj. > [ProFACT / int. Adj.]

Note
With approved balances (according to OIML accuracy class II), ProFACT / int. Adj. cannot be switched off.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekdays</td>
<td>Define the days on which fully automatic calibration is to be performed. Values can be □ (deactivated) or □ (activated)*. If time-controlled adjustment is not required, deactivate all days.</td>
<td>Monday*</td>
</tr>
<tr>
<td>Time 1</td>
<td>1. Defines the time for automatic adjustment. Note Up to 3 different times can be defined for the selected days.</td>
<td>Off</td>
</tr>
<tr>
<td>Time 2</td>
<td>2. Defines the time for automatic adjustment.</td>
<td>Off*</td>
</tr>
<tr>
<td>Time 3</td>
<td>3. Defines the time for automatic adjustment.</td>
<td>Off*</td>
</tr>
<tr>
<td>Temp.Criterion</td>
<td>Defines the temperature difference, which initiates automatic adjustment.</td>
<td>Off</td>
</tr>
<tr>
<td>Protocol Trigger</td>
<td>Defines when a protocol is to be printed automatically. On = protocol is automatically printed when automatic adjustment is initiated. Off = no printing.</td>
<td>On*</td>
</tr>
<tr>
<td>Advanced Options</td>
<td>This function can be used to extend ProFACT and internal adjustment procedures with internal tests.</td>
<td>Off*</td>
</tr>
</tbody>
</table>

* Factory setting

Advanced options

Navigation: [_system] > [Adjust/Test] > ProFACT / int. Adj. > [ProFACT / int. Adj.] > Advanced Options

Adjustment can be adapted to suit particular requirements by activating the advanced option function.

You can define the following parameters:
Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Found</td>
<td>Activates the input test. At the start of the adjustment sequence, an internal test (sensitivity) is performed to ascertain the actual status. The input test is automatically started when the adjustment sequence is activated and the result is displayed and recorded.</td>
<td>No*</td>
</tr>
<tr>
<td>Levelcontrol</td>
<td>Activates leveling. The level of the balance is checked.</td>
<td>No*</td>
</tr>
<tr>
<td>As Left</td>
<td>Activates the output test. When adjustment is complete, an internal test (sensitivity) is performed from anew.</td>
<td>No*</td>
</tr>
<tr>
<td>Tolerances</td>
<td>Defines the tolerances. Defines the tolerances applied during the input test and output test, see [Method 42].</td>
<td>Tolerance T1</td>
</tr>
<tr>
<td>Blocking</td>
<td>Blocks the balance. Defines whether the balance is to be blocked after exceeding the tolerance T2 in the input test or output test or after aborting adjustment. If the balance is blocked, it cannot be used until it is released with the appropriate release code.</td>
<td>No*</td>
</tr>
<tr>
<td>Code to Unblock</td>
<td>Releases the balance. Defines the code required to release a balance that has been blocked due to an input test, adjustment or output test error.</td>
<td>Any (Z)*</td>
</tr>
</tbody>
</table>

* Factory setting

5.1.5 Automatic adjustment with an external test weight

Navigation: [System] > [Adjust/Test] > Autom. ext. Adjust.

If work is carried out with an external test weight, this setting can be used to define days and times when the balance requests adjustment.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autom. ext. Adjust.</td>
<td>Activates and defines the behavior of the adjustment function.</td>
<td>On</td>
</tr>
</tbody>
</table>

See also
Adjustment with external test weight [99]

5.1.5.1 Definition of parameters for automatic adjustment

The behavior of the automatic external adjustment function can be set by tapping the [Define] button.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekdays</td>
<td>Defines the days on which adjustment is to be carried out. Values can be ☐ (deactivated) or ☑ (activated)*.</td>
<td>Monday*</td>
</tr>
</tbody>
</table>
5.1.6 Testing the adjustment with an external test weight

Navigation: [System] > [Adjust/Test] > Autom. ext. Test

This setting can be used to enter days and times when testing of the adjustment with an external test weight is to be performed and the balance displays a reminder message.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autom. ext. Test</td>
<td>Activates and defines the behavior of the test function.</td>
<td>On</td>
</tr>
</tbody>
</table>

See also
- Adjustment with external test weight [99]

5.1.6.1 Definition of parameters for testing the adjustment

The behavior of the automatic external test function can be set by tapping the [Define] button.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekdays</td>
<td>Defines the days on which the adjustment test is to be performed.</td>
<td>Monday*</td>
</tr>
<tr>
<td>Time</td>
<td>Defines the test time.</td>
<td>0:00 … 23:59</td>
</tr>
</tbody>
</table>

* Factory setting

5.1.7 Test with WeightLink

Navigation: [System] > [Adjust/Test] > WeightLink > [Deactivated]

In this submenu you activate the WeightLink weight verification system. The description for the work with WeightLink and the recommended settings are described in the Operating Instructions WeightLink. For more information, please visit: http://www.mt.com/weightlink.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
</table>
| Activation Mode | Defines the option Activation Mode
Deactivated = the WeightLink procedure will not appear.
Activated = the WeightLink procedure is part of the external adjustment or the external test and cannot be aborted.
Prompt = the WeightLink procedure is part of the external adjustment or the external test, but can be skipped. It is possible to make a test without WeightLink. | Deactivated* | Activated | Prompt |

* Factory setting
Scanner
To select the scanner for the WeightLink procedure. The user can select between the WeightLink scanner and a standard data matrix scanner.

Note
The eData code can be verified by both standard and WeightLink scanners. The data matrix code on the WeightLink weights can only be verified with the WeightLink scanner. To verify the use of the correct weight, we recommend to use the WeightLink scanner.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Defines the information recorded in the test report.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight Set No.</td>
</tr>
</tbody>
</table>

Recalibration Date
Defines, if the information Recalibration Date will be validated.

Recalibration Interval
Defines the option Recalibration Interval.

Note
The option Recalibration Date must be activated.

Early Warning Recalibration
Defines the option Early Warning Recalibration. The system automatically informs the user 0 to 60 days before the recalibration takes place.

<table>
<thead>
<tr>
<th>Recalibration Date</th>
<th>Defines, if the information Recalibration Date will be validated.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Off*</td>
</tr>
</tbody>
</table>

Recalibration Interval
Defines the option Recalibration Interval.

Note
The option Recalibration Date must be activated.

Early Warning Recalibration
Defines the option Early Warning Recalibration. The system automatically informs the user 0 to 60 days before the recalibration takes place.

<table>
<thead>
<tr>
<th>Early Warning Recalibration</th>
<th>Defines the option Early Warning Recalibration. The system automatically informs the user 0 to 60 days before the recalibration takes place.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 … 60 Days (1 day*)</td>
</tr>
</tbody>
</table>

* Factory setting

5.1.8 Test history

Navigation: [System] > [Adjust/Test] > Test History

The balance always records all adjustment data and the required results of performed tests and stores these in a special fail-safe memory. The options in the test history allow the selection of results for documentation or printing.

Note
When the memory is full (120 entries for the GWP history), the oldest entries are automatically deleted and overwritten by new entries. It is important to ensure that entries required for the documentation standards are printed and archived to ensure full traceability of the performed tests and adjustments.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test History</td>
<td>Selects history.</td>
<td>Adj. History</td>
</tr>
</tbody>
</table>

Adj. History

A window with a list of performed adjustments can be displayed by tapping [Show]. Although the balance permanently records all adjustments made, only those selected for display in Adj. History Selection are listed. Specific data is displayed for each adjustment: date and time, type of adjustment, temperature, leveling. The complete list can be printed with [Print].

Adj. History Selection

You can define the following parameters:
Parameters	Explanation	Values
Selection | Selects the results to be stored. Select the adjustments to be displayed in the adjustment history. The list can be selectively shortened (including printout) for improved clarity. **Note** The balance records all adjustment operations. The settings in this menu define the operations to be displayed in the list. Values can be ☐ (deactivated) or ☑ (activated)*. | Manual adjust.* | Temperature* | Time Adjust.*

Display Datasets | Defines the number of displayed datasets. | Last 50* | Last 40 | Last 30 | Last 20 | Last 10

* Factory setting

GWP History
A window with a list of test sequence results can be displayed by tapping [Show]. The displayed entry can be printed with []. The GWP history can store maximum 120 entries. Only the results of test sequences are stored where the GWP history was set to [Yes].

See also
Test sequences [41]

5.1.9 Protocol – Definition of adjustment and test reports
Navigation: [] > [System] > [Adjust/Test] > Protocol
Information to be printed in the adjustment and test reports can be defined in the settings.
The arrow buttons can be used to page forward or back to a menu page.
You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Defines the information to be printed in the protocol. Values can be ☐ (deactivated) or ☑ (activated)*. SNR stands for serial number</td>
<td>Date/Time*</td>
</tr>
</tbody>
</table>

* Factory setting

5.2 Info
Navigation: [] > [System] > [Info]
This menu can be used to define an identification for the balance and all balance information can be displayed.

Note
The [Info] function key can be used as a shortcut for the [Show] key.

See [Selecting function keys] [77].
You can define the following parameters:
5.3 Standby

Navigation: [System] > [Standby]

This menu can be used to define the time of balance inactivity after which the balance is automatically set to the standby mode.

Attention

The balance must be unloaded before it can change to standby mode.

Note

Irrespective of the standby mode setting, the display brightness is automatically reduced if the balance remains inactive for 15 minutes. If the displayed value should change during the course of 15 minutes (e.g. due to vibrations), the balance waits a further 15 minutes until the display brightness is reduced.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby</td>
<td>Defines the energy saving function. The standby mode assumes after being switched off with the [OK] button. The balance can be switched on again by pressing the [OK] button.</td>
<td>Off*</td>
</tr>
</tbody>
</table>

* Factory setting

5.4 Date/Time

Navigation: [System] > [Date/Time]

This menu can be used to set the date and time.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Format</td>
<td>Sets the date format. D = Day, M = Month, Y = Year</td>
<td>D.MMM YYYY*</td>
</tr>
</tbody>
</table>
5.5 Peripherals

Various peripheral devices can be connected to the balance interface(s). This menu can be used to define the devices to be connected and interface parameters.

Each balance application supports specific peripheral devices. The control of peripheral devices can vary from application to application.

More information on the interaction of balance applications with various external devices can be found in the Solution Guide, available online at www.mt.com.

There are specific interface setting options for each of these devices. [Off] means that no device of this type is connected. [RS232 built-in] denotes the default installed RS232C interface. If further optional interfaces are available, they are automatically displayed in the menu. At this point, only the parameters of the default installed RS232C interface are described.

Important

Only a single device can be activated for each available interface; all devices must be deactivated [Off]. When a new device is activated, the previously selected device is automatically deactivated.

The arrow buttons can be used to page forward or back to a menu page.

Navigation: [System] > [Peripherals]

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printer</td>
<td>Printer.</td>
<td>Off*</td>
</tr>
<tr>
<td>Host</td>
<td>External computer (bidirectional communication; the balance can send data to the PC and receive commands or data from it).</td>
<td>Off</td>
</tr>
<tr>
<td>LabX</td>
<td>METTLER TOLEDO LabX software enables the definition of complete dialog-based balance operations and can store and manage measured values as well as further data in a database on the PC.</td>
<td>Off*</td>
</tr>
<tr>
<td>LabX Controlled Device</td>
<td>This interface is only used with LabX. Connected devices (e.g. LV11 feeder) communicate directly with LabX.</td>
<td>Off*</td>
</tr>
</tbody>
</table>
Tablet Feeder | METTLER TOLEDO LV11 tablet feeder. | Off* | RS232 built-in
--- | --- | --- | ---
Secondary Display | Remote display (Model-dependent) | Off* | RS232 built-in
Bar Code | Barcode reader. | Off* | RS232 built-in
RFID / Quantos | RFID reader/writer or Quantos Module. | Off* | RS232 built-in
Label Printer | Label printer. | Off* | RS232 built-in

* Factory setting

Note
Detailed information on optional interfaces and various peripheral devices can be found in the documentation supplied with these products.

When a device has been activated, the interface parameters for communication with this device, e.g. baud rate, data format, stop bits, handshake, end-of-line character, character set and **Continuous mode** (only for peripheral device **Host**) can be defined via the [Define] button.

These submenus are always displayed in English, irrespective of the dialog language selected.

RS232 built-in
You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baudrate</td>
<td>Defines the data transfer rate.</td>
<td>600</td>
</tr>
<tr>
<td>Bit / Parity</td>
<td>Defines the number of data bits and parity bits.</td>
<td>7/No</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>Defines the stop bits for data transfer.</td>
<td>1 Stopbit*</td>
</tr>
<tr>
<td>Handshake</td>
<td>Defines the synchronization for data transfer</td>
<td>None</td>
</tr>
<tr>
<td>End of line</td>
<td>Defines the end-of-line character</td>
<td><CR><LF>*</td>
</tr>
<tr>
<td>Char Set</td>
<td>Defines the character set</td>
<td>Ansi/Win*</td>
</tr>
<tr>
<td>Continuous mode</td>
<td>Defines the transfer of weighing data</td>
<td>Off*</td>
</tr>
</tbody>
</table>

* Factory setting

Information on Continuous mode
In **Continuous mode**, the weighing data is continuously transferred via the interface. The **Continuous mode** is only available for the peripheral device **Host** and default installed RS232C interface [RS232 built-in]. When the **Continuous mode** is activated, additional setting options are available.

<table>
<thead>
<tr>
<th>Output Format</th>
<th>MT-SICS = the data is transferred in MT-SICS format (Mettler Toledo Standard Interface Command Set). MT-SICS operates bidirectional, i.e. the balance can also receive confirmations or commands from the host. A separate reference manual is available for MT-SICS.</th>
<th>MT-SICS*</th>
<th>PM</th>
<th>AT/MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM = emulates the data format of PM balances (unidirectional).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT/MT = the data is transferred in the format of METTLER TOLEDO AT and MT balances (unidirectional).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Updates/sec. | Defines the number of datasets transferred via the interface per second. | 2 | 5* | 6 | 10 |

* Factory setting
Note for NetCom Kit

If your instrument is equipped with the NetCom Kit consider the following settings for your peripheral devices:

<table>
<thead>
<tr>
<th>Setting option</th>
<th>Host computer COM1</th>
<th>Label printer COM2</th>
<th>Printer COM3</th>
<th>Other serial device COM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Mode</td>
<td>Client & Server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote Host Address</td>
<td>192.168.1.102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote Host Port Number</td>
<td>8001</td>
<td>8002</td>
<td>8003</td>
<td>8004</td>
</tr>
<tr>
<td>Local Server Port Number</td>
<td>8001</td>
<td>8002</td>
<td>8003</td>
<td>8004</td>
</tr>
<tr>
<td>End of line</td>
<td><CR><LF></td>
<td><CR></td>
<td><CR><LF></td>
<td><CR><LF></td>
</tr>
</tbody>
</table>

5.6 Option

Navigation: [System] > [Option]

After the installation of specific interface options (e.g. Ethernet), an additional icon is displayed in the system settings. Global interface settings can be made via [Option]. These are described in the instructions supplied with the optional interface. This menu item contains only some basic information to help with general communication problems.

Note

These submenus are always displayed in English, irrespective of the dialog language selected.

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td>Activates/deactivates the Dynamic Host Configuration Protocol. The Dynamic Host Configuration Protocol is used to automatically assign to the client PC a currently unused IP address from an address pool. Other information such as the domain name, standard gateway and specific DNS server can also be transferred to the client.</td>
<td>Off*</td>
</tr>
<tr>
<td>IP-Address</td>
<td>Defines the IP address in the format "XXX.XXX.XXX.XXX" (X = 0 … 255). The IP address must be distinctive within a corporate network and conform to the conventions for IP addresses.</td>
<td>Any</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Defines the subnet in the format "XXX.XXX.XXX.XXX" (X = 0 … 255). The subnet mask is used to inform the routers within a network which bits in the four quads in the IP address are significant for routing in the search for the addressed computer within a specific network.</td>
<td>Any</td>
</tr>
<tr>
<td>Standard Gateway</td>
<td>Defines the Standard Gateway Address in the format "XXX.XXX.XXX.XXX" (X = 0 … 255). This may be necessary if the network is connected to another network via a router. A gateway denotes the transition between two networks. A gateway computer is a special computer connected to both networks. Different protocols are converted in certain circumstances. A gateway can also be a transition from a logical (often also purely organizational) network to another, whereby both used the same protocol.</td>
<td>Any</td>
</tr>
</tbody>
</table>
Domain Name Server | Defines the Domain Name Server Address in the format "XXX.XXX.XXX.XXX" (X = 0 ... 255). If domain names for calling network users are supported in the TCP/IP network, the domain name server address must be entered here. | Any

Hostname | Defines the computer or server. General computer or server (on which specific user services are normally provided). Often used for the computer to which a data link has been established. | not available

Note for NetCom Kit
If your instrument is equipped with the NetCom Kit consider the following settings for your peripheral devices:

<table>
<thead>
<tr>
<th>Page 1</th>
<th>Page 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td>Off</td>
</tr>
<tr>
<td>Domain Name Server</td>
<td></td>
</tr>
<tr>
<td>IP-Address</td>
<td>192.168.1.101</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Standard Gateway</td>
<td>not available</td>
</tr>
</tbody>
</table>

5.7 Administrator

Navigation: [System] > [Administrator]

This menu can be used to change the administrator ID and password. A general reset of all balance settings can be performed. Access rights for individual users can be allocated and specifications for recording safety-relevant procedures defined.

Note
This menu is protected ex works with an ID and a password.

5.7.1 Configuration of the security system

Navigation: [System] > [Administrator]

1 Tap [Administrator].
 ➞ Protected Area: Enter Administrator ID. window appears.
2 Enter the ID. Factory setting: Z.
3 Confirm with [OK].
 ➞ Protected Area: Enter Admin. Password. window appears.
4 Enter the password. Factory setting: Z.
 ➞ Administrator window appears.
The arrow buttons can be used to page forward or back to a menu page.

Attention
The ID and password must always be entered in the defined language.
- If the dialog language is changed, it is possible that the access codes cannot be entered.
- If the balance is controlled with commands via an external host, the password protection is deactivated.

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator ID</td>
<td>Changes the administrator ID.</td>
<td>See [Changing the administrator ID and password 61]</td>
</tr>
<tr>
<td>Administrator Password</td>
<td>Changes the administrator password.</td>
<td>See [Changing the administrator ID and password 61]</td>
</tr>
<tr>
<td>Master Reset</td>
<td>Resets the balance settings to the factory settings.</td>
<td>See [Performing a master reset 61]</td>
</tr>
</tbody>
</table>
5.7.1.1 Changing the administrator ID and password

Navigation: [Settings] > [System] > [Administrator]

The **Administrator ID** and **Administrator Password** menu items can be used to change the ID and password access codes defined by default.

Note
Both an ID and a password must be defined. If the existing code is deleted and no new code is entered, an error message is displayed.

1. Tap **Administrator ID** and/or **Administrator Password** and subsequently the associated button.
 - The **Administrator ID** and/or **Administrator Password** window appears.
2. Change the settings and confirm with [OK].

⚠️ **CAUTION**

Remember IDs and passwords!
Protected menu areas cannot be accessed without ID or password.

- Note IDs and passwords and keep them in a safe place.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator ID</td>
<td>Creates a new ID or changes an existing ID (max. 20 characters).</td>
<td>Any (Z)*</td>
</tr>
<tr>
<td>Administrator Password</td>
<td>Creates new password or changes an existing password (max. 20 characters).</td>
<td>Any (Z)*</td>
</tr>
</tbody>
</table>

* Factory setting

5.7.1.2 Performing a master reset

Navigation: [Settings] > [System] > [Administrator] > [Master Reset]

This menu item can be used to reset all balance settings to the factory settings. The date and time settings and recorded adjustment operations are not affected.

⚠️ **CAUTION**

Data loss after system reset.
After a master reset, the balance is reset to the factory settings. This means that all data such as user and application-specific settings, system settings including administrator ID and password are deleted.
1 Tap Master Reset.
 ➔ Activate factory settings? window appears.
2 Confirm with [OK].
3 To abort, tap [C].
4 To exit the menu item, tap [OK].
 ➔ The balance restarts with the factory settings.
You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Reset</td>
<td>Resets the balance to the factory settings.</td>
<td>None</td>
</tr>
</tbody>
</table>

5.7.1.3 Definition of user access rights

Navigation: [][System] > [Administrator] > Rights Home

The Rights Home and Rights User 1 … Rights User 7 menu items can be used to define access rights and select applications for all 8 user profiles.

Note
The user profile designations, e.g. Rights User 1 correspond to the factory setting; these can be changed in the user-specific settings.

See [User ➔ 68].

After tapping the [Define] button, the menu areas protected with ID and password can be defined for the selected user profile.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup</td>
<td>All weighing parameters available in the user-specific settings [].</td>
<td>No Protection*</td>
</tr>
<tr>
<td>parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustweight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>Selects the user profile [].</td>
<td>No Protection*</td>
</tr>
<tr>
<td>System</td>
<td>All system settings</td>
<td>No Protection*</td>
</tr>
<tr>
<td>User Setting</td>
<td>All user-specific settings [].</td>
<td>No Protection*</td>
</tr>
<tr>
<td>Application</td>
<td>Selects the application [].</td>
<td>No Protection*</td>
</tr>
</tbody>
</table>
Application Selection

Defines the applications available for the selected user profile. Values can be ☐ (deactivated) or ☑ (activated)*.

Weighing* | Piececounting* | Percent* | Formulation* | Titration* | Density* | Diff. weighing* | Pipette Check* | Statistics* | Remote*

* Factory setting

5.7.1.4 Record of safety-relevant operations

Navigation: [Settings] > [System] > [Administrator] > History

The balance is able to document changes to protected settings. The History menu item can be used to view a list of these operations and switch recording on or off.

Note

When the memory is full (after about 50 recorded changes), the oldest operation is automatically deleted. If laboratory standards or QA systems require complete traceability of all changes made, the list must be printed and archived from time to time.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>Displays a list of changes made to protected settings. Specific data is displayed for each change (date and time, user, change made). The list can be printed by pressing the [] key.</td>
<td>Show</td>
</tr>
</tbody>
</table>

| Record Mode | Switches recording on or off. | Off* | On |

* Factory setting

5.7.1.5 Reminder function for changing a password

Navigation: [Settings] > [System] > [Administrator] > Passw. Change Date

For security reasons, passwords should be changed regularly; this menu item can be used to define if and when the balance is to generate a reminder to change passwords.

1. Select Request and subsequently tap the associated button.
 - A numeric input window appears.
2. Enter the date for the change of password and confirm with [OK].
3. To abort, tap [C].
4. To exit the menu item, tap [OK].
 - When the selected date is reached, the message Administrator The password change date has been reached. Please arrange changes. appears.

Note

The administrator must ensure that all passwords are changed. The balance does not check this. If the message is deleted with [OK], it is displayed every 3 hours from anew until a new date is defined or the reminder function is deactivated.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passw. Change Date</td>
<td>Activates/deactivates the reminder function.</td>
<td>Off*</td>
</tr>
</tbody>
</table>

| Request | Enter the date (in DD.MM.YYYY) on which the balance is to generate a reminder to change the password. | None |

* Factory setting
5.7.1.6 Definition of the number of users

Navigation: [System] > [Administrator] > Number of users

This menu item can be used to define the user profiles available under the [Home] key. The user profile Home is not displayed and cannot be deactivated.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of users</td>
<td>Defines the number of users available in the user profile [Home]. Values can be [] (deactivated)* or [] (activated).</td>
<td>User 1*</td>
</tr>
</tbody>
</table>

* Factory setting

5.7.1.7 Entering the registration code for Remote XPE software

Navigation: [System] > [Administrator] > Remote appl. reg.

In this menu item you can enter the registration code for the Remote XPE software.

1) Registration code is available.

1 Beside Remote appl. reg. > [Enter].
 ⇒ An alphanumeric input window is displayed.

2 Enter the registration code and confirm with [OK].
 ⇒ A confirmation window is displayed, tap the [OK] button.

5.8 Level sensor

Navigation: [System] > [Levelcontrol]

The built-in level sensor permanently monitors the balance for correct horizontal alignment. This menu can be used to activate or deactivate the level sensor and define the settings for the generation of warnings within incorrect leveling.

Leaving information, see Leveling the balance.

Note

- The level sensor depends on the type of balance
- The level sensor cannot be switched off on some balances.
- The level sensor is coupled with the backlighting of the level indicator above the right foot screw. The level indicator is illuminated when the level sensor is activated.

Navigation: [System] > [Levelcontrol] > Levelcontrol > [Define]

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning Text</td>
<td>Defines whether and how often a warning text is to be displayed if the balance is not precisely leveled.</td>
<td>Off</td>
</tr>
</tbody>
</table>

| Warning Beep | Defines if and how often an audible warning is to be generated if the balance is not precisely leveled. | Off | Once* | Repeat |

* Factory setting
6 User-specific Settings

Navigation: [A]

This section describes the procedure for defining specific settings for each user. This allows the balance to be adapted to the respective work technique and specific tasks.

To be noted is that all settings are stored under the active user profile and apply to working with all applications within this profile. It must be ensured that the required user profile is selected. When a user profile is displayed, the associated settings are automatically loaded.

- A printer is connected and activated as an output device in the peripheral device settings.
 1 To check the user profile, press [A].
 2 To print out the settings, press [A].

Note
- The detail of the protocol depends on the point at which printout is activated in the system settings.
 Press [A] in the uppermost level of the user-specific settings; all settings are recorded. Start printing, e.g. in the [Terminal] submenu; only settings for the terminal are recorded.
 - To display the user-specific settings, press [A].
 ⇒ The [User Setting] window is displayed.

Example: Printout

<table>
<thead>
<tr>
<th>User Setting</th>
<th>Weighing parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighing Mode</td>
<td>Universal</td>
</tr>
<tr>
<td>Environment</td>
<td>Standard</td>
</tr>
<tr>
<td>Value Release</td>
<td>Reliable+Fast</td>
</tr>
<tr>
<td>AutoZero</td>
<td>On</td>
</tr>
<tr>
<td>User</td>
<td></td>
</tr>
<tr>
<td>User Name</td>
<td>Home</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>User ID</td>
<td>1</td>
</tr>
<tr>
<td>Terminal</td>
<td></td>
</tr>
<tr>
<td>Brightness</td>
<td>80</td>
</tr>
<tr>
<td>Colour selection</td>
<td>PaletteBlueCold</td>
</tr>
<tr>
<td>Sound</td>
<td>70</td>
</tr>
<tr>
<td>Touch Function</td>
<td>On</td>
</tr>
<tr>
<td>Optical key feedback</td>
<td>On</td>
</tr>
<tr>
<td>Speedread</td>
<td>On</td>
</tr>
<tr>
<td>StatusLight</td>
<td>On</td>
</tr>
<tr>
<td>Brightness</td>
<td>60</td>
</tr>
<tr>
<td>Green status</td>
<td>On</td>
</tr>
</tbody>
</table>

Overview of user-specific settings

The user-specific settings are displayed in the form of symbols. The individual settings can be displayed and changed by tapping the symbols.

Note
- If this menu has been protected by the administrator, the appropriate ID and password must be entered.
- The user profile is selected.
 1 Tap, e.g. [Terminal].
 ⇒ Terminal window appears.
 2 Select the required menu item (e.g. Sound).
 3 Change the settings and confirm with [OK].
 4 To abort, tap [C].
 5 To exit the menu item, tap [OK].
6.1 Weighing parameters

Navigation: [User Setting] > [User Setting]

This menu can be used to adapt the balance to suit specific requirements.

1. Tap [User Setting] and subsequently the associated button.
2. Settings can be changed by tapping the associated button.
3. Change the settings and confirm with [OK].

Note

If access to this menu has been protected by the administrator, the appropriate ID and password must be entered.

You can define the following parameters:

Table: Designation and Explanation

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wghparam</td>
<td>Settings for adjusting the balance to specific weighing conditions.</td>
</tr>
<tr>
<td>User</td>
<td>Settings for the 8 different user profiles with respective information (e.g. name, password, dialog language).</td>
</tr>
<tr>
<td>Door</td>
<td>Settings for the motorized glass draft shield (depending on type).</td>
</tr>
<tr>
<td>Terminal</td>
<td>Settings for the display (e.g. brightness) and for the behavior of the terminal.</td>
</tr>
<tr>
<td>User Reset</td>
<td>Reset all settings for the user profile to the factory settings.</td>
</tr>
</tbody>
</table>

Menu structure

<table>
<thead>
<tr>
<th>Main menu</th>
<th>Submenu</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wghparam</td>
<td>Weighing Mode</td>
<td>See [Weighing parameters ➤ 66]</td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value Release</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auto Zero</td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>User Name</td>
<td>See [User ➤ 68]</td>
</tr>
<tr>
<td></td>
<td>Language</td>
<td></td>
</tr>
<tr>
<td></td>
<td>User ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Password</td>
<td></td>
</tr>
<tr>
<td>Door</td>
<td>Door Function</td>
<td>See [Doors ➤ 69]</td>
</tr>
<tr>
<td></td>
<td>Doorway</td>
<td></td>
</tr>
<tr>
<td>Terminal</td>
<td>Brightness</td>
<td>See [Terminal ➤ 70]</td>
</tr>
<tr>
<td></td>
<td>Colour selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sound</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Touch Function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Touchadjust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optical key feedback</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speedread</td>
<td></td>
</tr>
<tr>
<td></td>
<td>StatusLight</td>
<td></td>
</tr>
<tr>
<td>User Reset</td>
<td>no submenu</td>
<td>See [User factory settings ➤ 73]</td>
</tr>
</tbody>
</table>

6 To exit the [User Setting], tap [Exit] or press [Back].

- **User Settings**
- **Analytical Balances**
6.1.1 Weighing mode

Navigation: [Menu] > [Wghparam] > Weighing Mode

This setting can be used to adapt the balance to the weighing mode.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighing Mode</td>
<td>Defines the weighing mode.</td>
<td>Universal*</td>
</tr>
</tbody>
</table>

* Factory setting

Weighing mode settings

Note
The number of available settings depends on the type of balance.

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal</td>
<td>For all standard weighing applications.</td>
</tr>
<tr>
<td>Dosing</td>
<td>For dosing liquid or powdery products. With this setting, the balance responds very quickly to the smallest changes in weight.</td>
</tr>
<tr>
<td>Sensor Mode</td>
<td>Depending on the setting of the ambient conditions, this setting delivers a filtered weighing signal of varying strength. The filter has a linear characteristic in relation to time (not adaptive) and is suitable for continuous measured value processing.</td>
</tr>
<tr>
<td>Checkweighing</td>
<td>With this setting, the balance only reacts to significant changes in weight and the result is very stable.</td>
</tr>
</tbody>
</table>

6.1.2 Ambient conditions

Navigation: [Menu] > [Wghparam] > Environment

With this setting, the balance can be optimally adapted to the ambient conditions at locations.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Defines the ambient conditions</td>
<td>Very stable</td>
</tr>
</tbody>
</table>

* Factory setting

Note
The number of available settings depends on the type of balance.

6.1.3 Measured value release

Navigation: [Menu] > [Wghparam] > Value Release

This setting can be used to define how quickly a measured value is recognized as stable by the balance and released.

You can define the following parameters:
Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value Release</td>
<td>Defines measured value release.</td>
<td>Very fast</td>
</tr>
</tbody>
</table>

* Factory setting

6.1.4 AutoZero

Navigation: [\textbullet] > [Wghparam] > AutoZero

This menu item can be used to switch the automatic zero correction on or off.

Note

This menu item is not available for approved balances.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoZero</td>
<td>Activates/deactivates the automatic zero correction. It corrects the zero deviations, e.g. that can occur due to slight fouling of the weighing pan.</td>
<td>Off</td>
</tr>
</tbody>
</table>

* Factory setting

6.2 User

Navigation: [\textbullet] > [User]

This menu can be used to define the user name, dialog language and user access codes.

1. Tap [User] and subsequently the associated button.
2. Change the settings.
3. Confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name</td>
<td>The name of the current user profile can be changed here.</td>
<td>See [User name 68]</td>
</tr>
<tr>
<td>Language</td>
<td>Defines the dialog language.</td>
<td>See [Language 69]</td>
</tr>
<tr>
<td>User ID</td>
<td>Change the user ID.</td>
<td>See [User ID and password 69]</td>
</tr>
<tr>
<td>Password</td>
<td>Change the user password.</td>
<td></td>
</tr>
</tbody>
</table>

6.2.1 User name

Navigation: [\textbullet] > [User] > User Name

The name of the current user profile can be changed in this menu item. Alphanumeric characters can be entered in the input window.

Note

If the entered user name already exists, an error message is displayed. After changing the name, the user profile appears at the top left of the display and in the profile menu [\textbullet] under the new name. The user name is also printed in the protocols.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name</td>
<td>Changes the name of the current user profile (max. 20 characters).</td>
<td>Any e.g. (User 1)*</td>
</tr>
</tbody>
</table>

* Factory setting
6.2.2 Language

Navigation: [User] > User > Language

This menu item can be used to select the dialog language. The language is changed immediately. All windows and messages are displayed in the selected language.

Exception: interface parameters in the system settings are always in English.

Note
If the dialog language is changed, it is possible that administrator and user access codes (password and ID) cannot be entered. The ID and password must therefore always be entered in the defined language!

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>Defines the preferred language.</td>
<td>English</td>
</tr>
<tr>
<td>Note</td>
<td>The language is normally preset for the country of use.</td>
<td></td>
</tr>
</tbody>
</table>

6.2.3 User ID and password

Navigation: [User] > User ID or Password

The current user access codes can be changed in these two menu items with identical dialogs. These codes are required for accessing menu areas that have been protected at user level by the administrator.

If an existing ID or password is deleted and no new code is entered, an error message is displayed.

Note
If access to both of these menu items is protected by the administrator, the current ID and password must be entered before the code can be changed.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>User ID</td>
<td>Changes the existing current user profile ID (max. 20 characters).</td>
<td>Any (Home = 0</td>
</tr>
<tr>
<td>Password</td>
<td>Changes the existing current user profile password (max. 20 characters).</td>
<td>Any (Home = 0</td>
</tr>
</tbody>
</table>

* Factory setting

6.3 Doors

Navigation: [Door]

This menu can be used to adapt the function of the glass draft shield doors to suit specific requirements (Model-dependent).

- The user profile is selected.
- Tap [Door].
 -Door window appears.
2. Select the required menu item (e.g. Door Function).
 - A selection window appears.
3. Change the settings and confirm with [OK].

Menu structure

<table>
<thead>
<tr>
<th>Main menu</th>
<th>Submenu</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Function</td>
<td>Manual</td>
<td>See section Door function</td>
</tr>
<tr>
<td></td>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td>Doorway</td>
<td>100 %...</td>
<td>See section Door opening</td>
</tr>
<tr>
<td></td>
<td>25 %</td>
<td></td>
</tr>
<tr>
<td>Doorway inner draft shield</td>
<td>100 %...</td>
<td>See section Door opening</td>
</tr>
<tr>
<td></td>
<td>25 %</td>
<td></td>
</tr>
</tbody>
</table>

Door Function

The operation of the door function can be defined with this setting.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Function</td>
<td>Activates/deactivates the draft shield door function.</td>
<td>Manual*</td>
</tr>
</tbody>
</table>

* Factory setting

Note

Information on configuration of SmartSens, see [Settings for SmartSens and ErgoSens 90].

The door function [Automatic] is not compatible with [Detection mode] [Automatic] the electrostatic detection, see [Settings for electrostatic detection 91]. If both [Automatic] options are selected, the electrostatic detection has priority, i.e. the doors are not automatically operated.

Example

- When the [→T←] button is pressed, the doors open automatically for loading the tare weight.
- When a request is made to load the adjustment weight while adjusting the balance, the doors open automatically. The doors close automatically when the weight is loaded.
- The glass draft shield closes automatically for all weighings to achieve a stable weight indication.
- For different operations (e.g. piece counting), the doors open and close automatically as required by the application.

Doorway

If the application permits, the door opening angle can be reduced. This shortens opening and closing times, reducing environmental influences (e.g. drafts).

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doorway</td>
<td>Defines the extent to which the glass draft shield doors can be opened (automatically or manually).</td>
<td>100 %*</td>
</tr>
</tbody>
</table>

Door opening settings

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 %...</td>
<td>Opens the door fully.</td>
</tr>
<tr>
<td>25 %</td>
<td>Opens the doors a quarter.</td>
</tr>
</tbody>
</table>

6.4 Terminal

Navigation: [进入了] > [Terminal]

This menu can be used to adapt the terminal to suit specific requirements and the display adjusted.
The user profile is selected.

1. Tap [Terminal].
 ⇒ Terminal window appears.
2. Select the required menu item, e.g. Brightness and subsequently tap the associated button.
 ⇒ Brightness window appears.
3. Tap the plus or minus arrow key and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightness</td>
<td>Adjusts the display brightness.</td>
<td>See [Brightness 71]</td>
</tr>
<tr>
<td>Colour selection</td>
<td>Selects the display color.</td>
<td>See [Color selection 71]</td>
</tr>
<tr>
<td>Sound</td>
<td>Set the beep volume.</td>
<td>See [Beep 72]</td>
</tr>
<tr>
<td>Touch Function</td>
<td>Activates/deactivates the display touch function</td>
<td>See [Touch function 72]</td>
</tr>
<tr>
<td>Touchadjust</td>
<td>Activates/deactivates the touch screen adjustment.</td>
<td>See [Touch adjustment 72]</td>
</tr>
<tr>
<td>Optical key feedback</td>
<td>Activates/deactivates the visual feedback.</td>
<td>See [Optical key feedback 72]</td>
</tr>
<tr>
<td>Speedread</td>
<td>Activates/deactivates the weighing result display color selection.</td>
<td>See [Speedread 72]</td>
</tr>
<tr>
<td>StatusLight</td>
<td>Activates/deactivates the status light. Defines the brightness.</td>
<td>See [Status light 73]</td>
</tr>
</tbody>
</table>

6.4.1 Brightness

Navigation: [40] > [Terminal] > Brightness

This menu item can be used to adjust the display brightness. The brightness is adjusted in 20% steps each time one of the two arrow keys is tapped.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightness</td>
<td>Adjusts the display brightness (in 20% steps).</td>
<td>20 % … 100 % (80 %)*</td>
</tr>
</tbody>
</table>

* Factory setting

6.4.2 Color selection

Navigation: [40] > [Terminal] > Colour selection

This menu item can be used to adjust the display color. The colors can be used for orientation. Different colors can be used for user profiles for easy identification of a currently active profile. There are a total of 8 different colors. 4 different colors with low (left column) or high (right column) contrast.

Note

The high contrast colors make the display easier to read in poor lighting conditions.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour selection</td>
<td>Color adjustment.</td>
<td>Color 1*</td>
</tr>
</tbody>
</table>

* Factory setting
6.4.3 **Beep**

Navigation: [Terminal] > Sound

This menu item can be used to adjust the beep volume. The volume is increased in 10% steps each time one of the two arrow keys is tapped. Setting the volume to 0% switches off the beep.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound</td>
<td>Adjusts the volume (in 10% steps)</td>
<td>0 % … 100 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(70 %)*</td>
</tr>
</tbody>
</table>

* Factory setting

6.4.4 **Touch function**

Navigation: [Terminal] > Touch Function

This menu item can be used to activate or deactivate the touch screen touch function. If the [Touch Function] is deactivated, the display will no longer respond to touch in weighing mode. Settings can no longer be made by tapping the display (exception: function keys).

Important

The touch function is always active in setting mode to allow settings to be made.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touch Function</td>
<td>Activates/deactivates the touch screen touch function.</td>
<td>On</td>
</tr>
</tbody>
</table>

* Factory setting

6.4.5 **Touch adjustment**

Navigation: [Terminal] > Touchadjust

If the instrument does not respond correctly when a certain area of the display is tapped, the touch screen can be adjusted with [Touchadjust].

1. Tap [Activate].
 - A window is displayed.
2. Tap the flashing area. This procedure must be repeated several times.
3. The procedure can be interrupted at any time by tapping [C].
 - When all flashing areas have been selected, the window closes.

6.4.6 **Optical key feedback**

Navigation: [Terminal] > Optical key feedback

A short beep is generated each time a button is pressed or a menu function initiated as confirmation. For additional optical feedback, the [Optical key feedback] function can be activated. When the beep sounds, the yellow LEDs on the right and left at the bottom of the status bar also light up briefly on the terminal.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical key feedback</td>
<td>Activates/deactivates the visual feedback.</td>
<td>Off</td>
</tr>
</tbody>
</table>

* Factory setting

6.4.7 **Speedread**

Navigation: [Terminal] > Speedread
If this function is activated, the weighing result is displayed in a light color as long as it remains unstable. The result is displayed in a darker color when it is stable. If the [Speedread] function is deactivated, the weighing result is always displayed in the same color, irrespective of whether it is stable or not.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speedread</td>
<td>Activates/deactivates the color display of the weighing result.</td>
<td>Off*</td>
</tr>
</tbody>
</table>

* Factory setting

6.4.8 Status light

Navigation: [Terminal] > StatusLight

New intelligent safety tools monitor the balance ready status. This menu item can be used to activate or deactivate the status light. The built-in status light in the terminal shows that the balance is ready to use.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>StatusLight</td>
<td>Activates/deactivates the status light. Green = balance is ready to use. Flashing green = balance is busy. Example: Internal adjustment in progress. Yellow = task pending, balance can still be used. Example: Automatic internal adjustment pending. Red = balance cannot/must not be used. Example: Balance is not correctly leveled.</td>
<td>Off</td>
</tr>
</tbody>
</table>

Status light settings

Menu structure

<table>
<thead>
<tr>
<th>Main menu</th>
<th>Submenu</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>no submenu</td>
<td>See Parameter table</td>
</tr>
<tr>
<td>On</td>
<td>Brightness</td>
<td>Green status</td>
</tr>
</tbody>
</table>

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightness</td>
<td>Adjusts the display brightness (in 10% steps).</td>
<td>10 % … 100 % (60 %)*</td>
</tr>
</tbody>
</table>

| Green status | Activates/deactivates the green status icon. If the green status icon is deactivated, the status light does not light up when the balance is ready to use. The other status icons (flashing green, yellow, red) are displayed as normal. | Off | On* |

* Factory setting

6.5 User factory settings

Navigation: [User] > [User Reset]

This menu can be used to reset all settings for an active user profile to the factory settings.
CAUTION

Data loss after user profile reset

After a reset, the balance is reset to the factory settings. All user and application-specific settings for the active user profile are reset to the factory settings. All individual settings, including user ID and password as well as measured values are deleted!

- The user profile is selected.
 1. Tap [User Reset].
 - User Reset window is displayed.
 2. Confirm with [OK].
 3. To abort, tap [C].
 - The balance restarts with the factory settings.
7 Weighing Application

Navigation: [Weighing]

This section provides information and descriptions of setting options for practical use of the application.

All application settings are saved under the active user profile. Each user can select specific settings for this application. It must be ensured that the required user profile is selected.

Selecting the application

1. Press [].
2. Tap the [Weighing] icon in the selection window.
 - The selected application is active.
 - The balance is ready for weighing.

7.1 Weighing application settings

Navigation: [Weighing] > [Weighing] > []

The procedure for performing a simple weighing has already been described, see [Weighing for the first time]. In addition to the described procedures (zeroing, taring and performing a simple weighing), the balance offers a number of options for adjusting the application to suit specific requirements.

1. Press [].
 - A window with application-dependent settings appears.
2. Select the required menu item (e.g. Function Keys).
3. Change the settings and confirm with [OK].
4. To exit the menu without saving, tap [C].
5. To restore the factory default settings, tap [STD].
6. To exit the menu item, tap [OK].

The arrow buttons can be used to page forward or back to a menu page.

Note

Settings can be printed out at any time in the application-dependent settings menu.

- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [].

Example: Printout

<table>
<thead>
<tr>
<th>Function Keys</th>
<th>ID</th>
<th>Nominal</th>
<th>+Tol</th>
<th>-Tol</th>
<th>Lotcounter</th>
<th>Adjust.int</th>
<th>Adjust.ext</th>
<th>Test int</th>
<th>Test ext</th>
<th>PreTare</th>
<th>Tare Store</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You can define the following parameters:
<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function Keys</td>
<td>Definition of function keys to appear at the bottom of the display. These keys enable direct access to specific functions.</td>
<td>See [Selecting function keys ➤ 77]</td>
</tr>
<tr>
<td>SmartTrac</td>
<td>Definition of the appearance of the graphic weighing-in aid.</td>
<td>See [Selecting SmartTrac ➤ 79]</td>
</tr>
<tr>
<td>Info Field</td>
<td>Definition of information fields to be displayed.</td>
<td>See [Selecting information fields ➤ 80]</td>
</tr>
<tr>
<td>AutoPrint</td>
<td>Activates/deactivates automatic weighing result printout.</td>
<td>See [Specifications for automatic protocol printout ➤ 80]</td>
</tr>
<tr>
<td>Display Unit</td>
<td>Definition of unit for result display.</td>
<td>See [Selecting weighing units ➤ 81]</td>
</tr>
<tr>
<td>Info Unit</td>
<td>Definition of an additional weighing unit. This appears in the respective display information field.</td>
<td>See [Selecting weighing units ➤ 81]</td>
</tr>
<tr>
<td>Custom Unit 1</td>
<td>Definition of a specific weighing unit.</td>
<td>See [Defining free weighing units ➤ 81]</td>
</tr>
<tr>
<td>Custom Unit 2</td>
<td>Definition of a second specific weighing unit.</td>
<td>See [Defining free weighing units ➤ 81]</td>
</tr>
<tr>
<td>Protocol</td>
<td>Selects data to be shown in the weighing protocols.</td>
<td>See [Protocol definition ➤ 82]</td>
</tr>
<tr>
<td>Print Key</td>
<td>Definition of the behavior of the [Print] key for manual weighing result printout.</td>
<td>See [Specifications for manual protocol printout ➤ 84]</td>
</tr>
<tr>
<td>Transfer Key</td>
<td>Formats data output via the [Transfer] function key.</td>
<td>See [Output data formatting (transfer key) ➤ 84]</td>
</tr>
<tr>
<td>Identification</td>
<td>Defines identifications.</td>
<td>See [Definition of identifications and protocol headers ➤ 87]</td>
</tr>
<tr>
<td>Bar Code</td>
<td>Defines how barcode data is processed. These settings are only relevant if a barcode reader is connected.</td>
<td>See [Instructions for processing barcode data ➤ 87]</td>
</tr>
<tr>
<td>MinWeigh</td>
<td>Activates/deactivates the minimum weight function. The minimum weight function ensures that the weighing results are within defined tolerances appropriate to the requirements of your quality assurance system.</td>
<td>See [MinWeigh function settings ➤ 88]</td>
</tr>
<tr>
<td>Tare Store</td>
<td>Predefines up to 10 selectable tare weights.</td>
<td>See [Tare memory definition and activation ➤ 89]</td>
</tr>
<tr>
<td>AutoTare</td>
<td>Activates/deactivates the tare function. The automatic tare function automatically stores the first stable weight as the tare weight.</td>
<td>See [Automatic taring function settings ➤ 90]</td>
</tr>
<tr>
<td>Smart & ErgoSens</td>
<td>Programs both terminal SmartSens sensors. Up to two external ErgoSens (optional) can be assigned a function in this menu.</td>
<td>See [Settings for SmartSens and ErgoSens ➤ 90]</td>
</tr>
<tr>
<td>StaticDetect Setup</td>
<td>Settings for electrostatic detection.</td>
<td>See [Settings for electrostatic detection ➤ 91]</td>
</tr>
<tr>
<td>Ionizer Setup</td>
<td>Settings for the optional anti-static kit (ionizer) for eliminating the build-up of electrostatic charges on weighing objects.</td>
<td>See [Settings for the optional anti-static kit (ionizer) ➤ 93]</td>
</tr>
</tbody>
</table>
7.1.1 Selecting function keys

Navigation: [Analysing] > [Weighing] > [] > Function Keys

Function keys enable direct access to specific functions and settings in the application. A function can be activated by tapping a key.

The function keys are displayed in the application at the bottom of the display. The numbers define the sequence in the display.

- Activate or deactivate function keys by tapping.
- To redefine the sequence, all function keys must be deactivated and subsequently activated in the required sequence.

The arrow buttons can be used to page forward or back to a menu page.

- Application is activated.
- Press [].
 - A window with application-dependent settings appears.
- Tap Function Keys > [Define].
- Select the Function Keys which you need.
 - The function key is automatically numbered.
- Change the settings and confirm with [OK].

7.1.1.1 Function key overview

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>![ID]</td>
<td>This function key can be used for the assignment of individual weighing identifications (descriptive texts), which are also shown in the protocols. After tapping this function key, a window is displayed in which the ID can be selected and text entered. Information for the definition of identifications, see [Definition of identifications and protocol headers] [87]. Information on practical working with identifications, see [Working with identifications] [95].</td>
</tr>
<tr>
<td>![Nominal]</td>
<td>Definition of the required nominal weight. This also serves as a reference for the tolerances. Information on nominal weight settings, see [Weighing-in to a nominal weight] [96].</td>
</tr>
<tr>
<td>![+Tol]</td>
<td>Definition of accuracy (tolerances) for weighing-in to a nominal weight. Information on tolerance settings, see [Weighing-in to a nominal weight] [96].</td>
</tr>
<tr>
<td>![Tol]</td>
<td>Definition of accuracy (tolerances) for weighing-in to a nominal weight. Information on tolerance settings, see [Weighing-in to a nominal weight] [96].</td>
</tr>
<tr>
<td>![Lotcounter]</td>
<td>Activates the lot counter and defines a start value. Information on settings, see [Working with the lot counter] [94].</td>
</tr>
<tr>
<td>![Adjust.int]</td>
<td>Balance adjustment with internal adjustment weight. Information on making and recording adjustments, see [Adjustment with internal weight/ProFACT] [99].</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Adjust.ext</td>
<td>Balance adjustment with an external adjustment weight. Information on making and recording adjustments, see [Adjustment with external test weight] 99. Note External adjustment is not available on certain legal-for-trade balances.</td>
</tr>
<tr>
<td>Test int</td>
<td>Balance adjustment test with an internal test weight. Information on performing and recording tests, see [Testing the adjustment with internal weight] 100.</td>
</tr>
<tr>
<td>Test ext</td>
<td>Testing balance adjustment with an external test weight. Information on performing and recording tests, see [Testing the adjustment with external test weight] 101.</td>
</tr>
<tr>
<td>PreTare</td>
<td>Numerical entry of a fixed tare weight (subtraction of tare weight). Information on tare weight entry, see [Taring options] 93.</td>
</tr>
<tr>
<td>Tare Store</td>
<td>Displaying a predefined tare weight. Information on the definition of predefined tare weights, see [Tare memory definition and activation] 89. Information on practical working with the tare memory, see [Taring options] 93.</td>
</tr>
<tr>
<td>1/2d … 1/1000d</td>
<td>Changes the resolution of the weighing result. Information on resolution settings, see [Changing the weighing result resolution] 93. Note For metrological reasons, resolution selection is not available on certain legal-for-trade balances.</td>
</tr>
<tr>
<td>Header</td>
<td>Prints the protocol header. Information on weighing protocol settings, see [Protocol definition] 82.</td>
</tr>
<tr>
<td>Footer</td>
<td>Prints the protocol footer. Information on weighing protocol settings, see [Protocol definition] 82.</td>
</tr>
<tr>
<td>Adj. History</td>
<td>Displays the adjustment history. Note Adjustments made in the system settings are displayed. Information on settings, see [Settings for adjustments and tests] 39.</td>
</tr>
<tr>
<td>Transfer</td>
<td>Transfers the current weight, without further data (additional information) directly to a connected host computer. The output data can be formatted. Information on output data formatting, see [Output data formatting (transfer key)] 84.</td>
</tr>
<tr>
<td>Test Sequence</td>
<td>Displays a list of tasks set to [Manual]. Information on settings, see [Assigning a test sequence to a task] 50.</td>
</tr>
<tr>
<td>Info</td>
<td>This function key is used as a shortcut for the [Show] key. Information on settings, see [Info] 55.</td>
</tr>
<tr>
<td>GWP History</td>
<td>Opens the history. All test results saved in the GWP history are displayed. Information on history settings, see [Test history] 54.</td>
</tr>
<tr>
<td>Ionizer</td>
<td>Starts/stops the connected ionizer, see [Settings for the optional anti-static kit (ionizer)] 93.</td>
</tr>
</tbody>
</table>
Manually starts the measurement of samples for electrostatic charges, see [Settings for electrostatic detection 91].

This function key is used as a shortcut for entering the switching threshold, see [Settings for electrostatic detection 91].

This function key is used as a shortcut for entering the nominal weight, +tolerance and -tolerance, see [SmartTrac dosing guide 79].

This function key is used as a shortcut for displaying the weighing result in a large size, see [Display 15].

Factory setting: [Adjust.int], [Target&Tol] and [ID] are enabled in this order.

7.1.2 Selecting SmartTrac

Navigation: [Dict] > [Weighing] > [ES-Det.] > SmartTrac

SmartTrac is a graphic remaining range display. It displays the already used and remaining weighing range. In certain applications, SmartTrac also facilitates weighing-in to a specific nominal weight.

SmartTrac is displayed below the weighing result on the right of the display, see [Display 15].

1. Press [Target&Tol].
 Window with application-dependent settings appears.
2. Tap the corresponding button.
3. Change the settings and confirm with [OK].

Note

This menu can also be displayed directly from the application by tapping SmartTrac. You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartTrac</td>
<td>Activates/deactivates SmartTrac or defines the display mode.</td>
<td>No SmartTrac</td>
</tr>
</tbody>
</table>

* Factory setting

7.1.2.1 SmartTrac dosing guide

Navigation: [Dict] > [Weighing] > [ES-Det.] > Function Keys > [Target&Tol]

In this menu item you can specify the settings of the function key [Target&Tol]. With the function key to set the nominal weight, the tolerance mode, the tolerances and the form of the SmartTrac.

- Function key is activated.
1. Press [Target&Tol].
 Window with application-dependent settings appears.
2. Tap the corresponding button.
3. Change the settings and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>Definition of the required nominal weight.</td>
<td>Any</td>
</tr>
<tr>
<td>Tolerance Mode</td>
<td>Definition of the tolerance mode in symmetric or asymmetric form.</td>
<td>Symmetric*</td>
</tr>
<tr>
<td>+/- Tolerance</td>
<td>Definition of accuracy (tolerances) for weighing-in to a nominal weight.</td>
<td>Any</td>
</tr>
<tr>
<td>SmartTrac</td>
<td>Activates/deactivates SmartTrac or defines the display mode.</td>
<td>No SmartTrac</td>
</tr>
</tbody>
</table>

* Factory setting
7.1.3 Selecting information fields

Navigation: [Application] > [Weighing] > [] > Info Field

The information fields in the display provide constant information on, e.g. set values, measured results. The numbered fields are displayed in the application. The numbers define the information field sequence in the display (maximum 4 information fields).

- Information fields can be activated or deactivated by tapping.
- To redefine the sequence, all information fields must be deactivated and then activated in the required sequence.

Application is activated.

1. Press [].
2. Tap Info Field > [Define].
3. Select the information fields that you need.
 - The information field is automatically numbered.
4. Change the settings and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info Field</td>
<td>Activates/deactivates the associated info fields (max. 4).</td>
<td>Nominal*</td>
</tr>
<tr>
<td>Lotcounter</td>
<td>displays the item counter status.</td>
<td></td>
</tr>
<tr>
<td>RefTare</td>
<td>if the [MinWeigh] function is activated, this information field displays the upper reference tare limit.</td>
<td></td>
</tr>
<tr>
<td>MinWeigh</td>
<td>if the [MinWeigh] function is activated, this information field displays the required minimum weight based on the reference tare.</td>
<td></td>
</tr>
<tr>
<td>MW-Method</td>
<td>if the [MinWeigh] function is activated, this information field displays which of the three MW methods are used for the QA standard.</td>
<td></td>
</tr>
</tbody>
</table>

* Factory setting

7.1.4 Specifications for automatic protocol printout

Navigation: [Application] > [Weighing] > [] > AutoPrint

This menu item can be used to define whether and under which conditions the balance automatically records the weighing result. Information defined for recording single values is printed.

See [Protocol definition > 82].

When this function is activated [On], the criteria for automatic entry can be defined via the [Define] button.

1. Press [].
 - A window with application-dependent settings appears.
2. Beside Autom. WeightEntry, tap the associated button.
 - Autom. WeightEntry window appears.
3. Tap [On] > [Define].
4. Change the settings and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit</td>
<td>For automatic protocol printout, the defined limits must not be reached and subsequently exceeded.</td>
<td>Any</td>
</tr>
</tbody>
</table>
When the limits are exceeded, the [Delay Time] starts, after lapse of which the weight is recorded. With this setting, the weighing result can be printed with a defined delay if necessary.

Delay Time

When the limits are exceeded, the [Delay Time] starts, after lapse of which the weight is recorded. With this setting, the weighing result can be printed with a defined delay if necessary.

Factory setting: [Off] Automatic entry disabled.

7.1.5 Selecting weighing units

Navigation: [Weighing] > [Display Unit] or [Info Unit]

The menu items **Display Unit** and **Info Unit** can be used to define the weighing units to be used. The weighing result can simultaneously be displayed in two different weighing units by selecting different units. The same units are available for selection under both menu items.

After changing the **Display Unit**, the current weighing result as well as the values in the information fields **Tare** and **Gross** are displayed in the new weighing unit. The **Info Unit** is used for the information field with the same name.

See [Selecting information fields ‣ 80].

Note
- The number of available units is model-dependent.
- All available units are either displayed together or shown as a rolling list.

1. Press `[`.

 ➞ A window with application-dependent settings opens.

2. Beside **Display Unit** or **Info Unit**, tap the associated button.

 ➞ A selection window appears.

3. Change the settings and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Unit</td>
<td>Defines the unit (model-dependent).</td>
<td>g</td>
</tr>
<tr>
<td>Info Unit</td>
<td>Defines the unit (model-dependent).</td>
<td>g</td>
</tr>
</tbody>
</table>

Factory setting: Model-dependent, for both units.

7.1.6 Defining free weighing units

Navigation: [Weighing] > [Custom Unit 1] or [Custom Unit 2]

A specific weighing unit can be defined under the menu items **Custom Unit 1** and **Custom Unit 2**. This allows calculations (e.g. surfaces or volumes) to be carried out directly during determination of the weighing result. The free weighing units are available in all menus and input fields in which weighing units can be selected (however, not for the entry of manual tare weights).

1. Press `[`.

 ➞ A window with application-dependent settings appears.

2. Tap **Custom Unit 1** or **Custom Unit 2** > [Off].

 ➞ **Custom Unit 1** or **Custom Unit 2** window appears.

3. Tap [On] > [Define].

 ➞ A selection window appears.

4. Change the settings and confirm with [OK].

You can define the following parameters:
Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
</table>
| **Formula** | Defines how subsequently defined value for [Factor] is calculated. There are 2 formulae available, where F stands for the factor and net for the weight.
\[F \times \text{Net} = \text{multiplies the net weight by the factor.} \]
\[F / \text{Net} = \text{factor is divided by the net weight.} \]
The formula can be used, for example, to simultaneously take into account a known error factor while weighing. | \[F \times \text{Net}, F / \text{Net} \] |
| **Factor** | Defines the factor \([-10^7 \ldots 10^7]\) with which the effective weighing result (net weight) is calculated via the previously selected formula. | Any |
| **Name** | Defines a designation for the free weighing unit (max. 4 characters).
Note
The entry of weighing units is not permitted. | Any |
| **Result Output Format** | Defines the formatting for the weighing result.
Example
A setting of "0.05" defines 2 places after the decimal point with rounding to 5. A determined result of 123.4777 is consequently displayed as 123.50.
Note
This function can only be used to reduce the resolution of the weighing result. No value must therefore be entered that exceeds the maximum balance resolution! Values that are too small are automatically rounded off. | Any |

Factory setting: [Off].

7.1.7 Protocol definition

Navigation: \[\text{[Options]} \rightarrow \text{[Weighing]} \rightarrow \text{[Options]} \rightarrow \text{Protocol}\]

This menu item can be used to define information to appear in the protocols. This extensive menu is divided into 3 submenus in which options for the header, recording of single values and the footer can be defined.

The numbered data items are printed in the protocols. The numbers determine the sequence in the printout.

- Information can be activated or deactivated by tapping. The sequence of the keys is automatically updated.
- To redefine the sequence, all information must be deactivated and subsequently activated in the required sequence.
- Application is activated.

1 Press [Options].
 ⇒ A window with application-dependent settings appears.
2 Tap Protocol > [Define].
 ⇒ Protocol window appears.
3 Tap (e.g. Header) > [Define].
4 Select the information key which you need.
 ⇒ The information key is automatically numbered.
5 Confirm with [OK].

The results and data can be printed out at any time.

Note

The arrow buttons can be used to page forward or back to a menu page.
A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [Print].

Example: Printout

Header / Footer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>Define the information to be printed in the protocol header (before the results).</td>
<td>Appl. Name*</td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+Tol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Tol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW-Method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>121.53 g</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>41.37 g</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>162.90 g</td>
<td></td>
</tr>
</tbody>
</table>

Header line of protocols

This submenu can be used to define information to be printed in the protocol header (before the results). The header is automatically printed if it has been defined as part of the protocol. However, the header can also be printed separately by tapping the [Header] function key.

Recording of single values

This submenu can be used to define the information to be reported for each individual result. Printing takes place by pressing the [Print] key or automatically if the automatic print function is activated.

Protocol footer

This submenu can be used to define the information to be printed in the protocol footer after the results (single values). The footer can be printed by tapping the [Footer] function key.

The footer options are identical with those of the header, only the Levelcontrol option is not available. You can define the following parameters:
Single value

Define the information to be recorded for each single result.

- **Levelcontrol** = records whether or not the balance is correctly leveled.
- **Nom.,+Tol,-Tol** = records the defined nominal weight and the defined plus and minus tolerances.
- **MW-Method** = records the selected method for the minimum weight.
- **ES-Detection** = records the electrostatic detection status.

Footer

Define information to be printed in the protocol footer after the results (single values).

- **SNR** = the serial numbers of the balance and terminal are printed. The balance type is generated by the balance and cannot be changed by the user.
- **Nom.,+Tol,-Tol** = records the defined nominal weight and the defined plus and minus tolerances.
- **MW-Method** = records the selected method for the minimum weight.

7.1.8 Specifications for manual protocol printout

Navigation: [Main Menu] > [Weighing] > [Print] > Print Key

This menu item can be used to define the behavior of the [Print] key (protocol printout).

1. Press [Print].
 - A window with application-dependent settings opens.
2. Beside Print Key, tap the associated button.
 - A selection window appears.
3. Change the settings and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print Key</td>
<td>Define the behavior of the [Print] key. Stable = the protocol is only printed if the weighing result is stable. Dynamic = the protocol is printed immediately, regardless of whether the weighing result is stable.</td>
<td>Stable*</td>
</tr>
</tbody>
</table>

* Factory setting

7.1.9 Output data formatting (transfer key)

Navigation: [Main Menu] > [Weighing] > [Transfer] > Transfer Key

A stable weight can be transferred via the interface to a host computer with the [Transfer] function key. This menu item can be used to define the formatting for output values. This can be necessary if the balance is operated together with other instruments, programs or peripheral devices that use a specific data format. It can be defined whether data is output to the host or also to the printer.

1. Press [Transfer].
 - A window with application-dependent settings appears.
2. Tap Transfer Key > [Define].
 - Transfer Key window appears.
3. Change the settings and confirm with [OK].
7.1.9.1 Output format

Data output is set by default to a standard format that generally corresponds to the weight displayed at the terminal, followed by an end-of-line character defined for the host. Negative weights are displayed with a minus sign. The output weight is left-justified.

See [Peripherals § 57].

Example (–12.8934 g):

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1</td>
<td>2</td>
<td>.</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>g</td>
<td>C</td>
<td>F</td>
<td>L</td>
</tr>
</tbody>
</table>

Note

- If the resolution of the displayed value is reduced, the weight is also transferred with reduced resolution to the host.
- If the balance has overload or underload at the time of data transfer, UNDERLOAD or OVERLOAD is transferred instead of the weight.

1 The output format can be changed by tapping the associated button under Data output format.
2 Activate [Customise] and subsequently tap the [Define] button.

Net weight icon

In the standard output format, net weights are not specially marked. To place an N in front of net weights, this function can be activated and also the field length defined. The net symbol is left-justified in the field.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Net weight icon deactivated.</td>
<td>None</td>
</tr>
<tr>
<td>Field length</td>
<td>Activates the net weight icon. Defines the field length (max. 10 characters).</td>
<td>1 … 10 (5 characters)*</td>
</tr>
</tbody>
</table>

Note

If the balance was not tared, the net symbol is not transferred. Blank characters are transferred appropriate to the selected field length.

* Factory setting
Weight format

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field length</td>
<td>Defines the total length of the weight data field including sign, decimal</td>
<td>1 … 20</td>
</tr>
<tr>
<td></td>
<td>point and decimal places (max. 20 characters).</td>
<td>(10)*</td>
</tr>
<tr>
<td>Note</td>
<td>Irrespective of their setting, as many places are output as necessary for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>complete transfer of the weight displayed at the terminal. The weight is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>output right-justified.</td>
<td></td>
</tr>
<tr>
<td>No. of decimal</td>
<td>Defines the number of decimal places. If the set value has less than the</td>
<td>0 … 6</td>
</tr>
<tr>
<td>digits</td>
<td>number of decimal places displayed at the terminal, a rounded value with</td>
<td>(max. number of places of the balance)*</td>
</tr>
<tr>
<td></td>
<td>the selected number of decimal places is transferred.</td>
<td></td>
</tr>
<tr>
<td>Sign</td>
<td>Defines the sign.</td>
<td>Always</td>
</tr>
<tr>
<td></td>
<td>* Always = each weight is preceded by a plus or minus sign. Neg. values =</td>
<td></td>
</tr>
<tr>
<td></td>
<td>only negative values are preceded by a minus sign. Positive values are</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transferred without sign.</td>
<td></td>
</tr>
<tr>
<td>Sign position</td>
<td>Defines whether the sign should directly precede the weight (right-justified)</td>
<td>-xxx.yy* l - xxx.yy</td>
</tr>
<tr>
<td></td>
<td>or left-justified.</td>
<td></td>
</tr>
</tbody>
</table>

* Factory setting

Weight unit field

In the standard output format, each weight is output with the weight unit (appropriate to the current display unit). This menu can be used to select whether weights are transferred with or without unit and also define the field length for the weight unit.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Defines whether weights are transferred with or without unit.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>(Output of weight unit activated)*</td>
<td></td>
</tr>
<tr>
<td>Field length</td>
<td>Defines the field length (max. 5 characters). Irrespective of their setting</td>
<td>1 … 5</td>
</tr>
<tr>
<td></td>
<td>for the field length, as many places are output as necessary for complete</td>
<td>(3)*</td>
</tr>
<tr>
<td></td>
<td>transfer of the weight displayed at the terminal. The weight unit is output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>left-justified (separated from the weight by a space).</td>
<td></td>
</tr>
</tbody>
</table>

* Factory setting

7.1.9.2 Data output to the printer

When the [Transfer] function key is pressed, the data is normally only transferred to the host. Data can also be sent to the printer by activating the setting.

Note

The previously described data formatting settings have no influence on data output to the printer. This is determined only by the protocol settings.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data transfer to</td>
<td>Activates/deactivates the data</td>
<td>Off* l On</td>
</tr>
<tr>
<td>printer</td>
<td>output to the printer.</td>
<td></td>
</tr>
</tbody>
</table>

* Factory setting
See also

- Protocol definition [› 82]

7.1.10 Definition of identifications and protocol headers

Navigation: [ID] > [Weighing] > [ID] > Identification

This menu item can be used to activate the 4 identifications or change their designations available under the [ID] function key. Define two headers for the weighing protocols. The entered designations appear in the respective information fields (e.g. company name, customer) and can be printed out in the weighing protocols.

Default ID designations are [ID1], [ID2], [ID3] and [ID4]. These can be replaced with specific designations (e.g. customer, order). The ID is subsequently available with the new designation under the [ID] function key.

1. **Press [ID].**
 → A window with application-dependent settings appears.

2. **Tap Identification > [Define].**
 → Identification window appears.

3. **Settings can be changed by tapping the associated button.**
 → An alphanumeric input window appears.

4. **Enter the designation and confirm with [OK].**

The arrow buttons can be used to page forward or back to a menu page.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>Activates/deactivates the 4 identifications or change their designations. Define two headers for the weighing protocols. Title 1 … Title 2 = defines a designation for the protocol header (max. 20 characters). ID1 Name … ID4 Name = defines the designation (max 20 characters).</td>
<td>Title 1*</td>
</tr>
</tbody>
</table>

* Factory setting

7.1.11 Instructions for processing barcode data

Navigation: [ID] > [Weighing] > [ID] > Bar Code

If a barcode reader or keyboard is connected to the balance, this menu can be used to define how the data is to be processed.

- The external device is appropriately configured in the [Peripherals] system setting.

1. **Press [ID].**
 → A window with application-dependent settings opens.

2. **Beside Bar Code, tap the associated button.**
 → A selection window appears.

3. **Change the settings and confirm with [OK].**

You can define the following parameters:
Parameters Explanation Values

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar Code</td>
<td>Defines how the data is be processed.</td>
<td>Off</td>
</tr>
<tr>
<td>ID1 … ID4</td>
<td>= the received barcode data is treated as identification texts and the corresponding identification assigned.</td>
<td></td>
</tr>
<tr>
<td>PreTare</td>
<td>= the barcode data is interpreted as a value for the subtraction of tare weight.</td>
<td></td>
</tr>
<tr>
<td>Host</td>
<td>= the data is transferred directly to a connected PC. If no PC is connected or this data cannot be received, it is ignored.</td>
<td></td>
</tr>
<tr>
<td>Open Input</td>
<td>= the data is written in the currently open input window (e.g. lot counter, ID or PreTare). The window is automatically closed after the data is processed. If no input window is open, the data is ignored.</td>
<td></td>
</tr>
</tbody>
</table>

* Factory setting

7.1.12 MinWeigh function settings

Navigation: [Menu] > [Weighing] > [] > MinWeigh

Attention
The menu with the settings for the MinWeigh function is deactivated by default and not accessible. The MinWeigh function must be activated and programmed by a service engineer. If this function is required, but is not accessible in the menu, please contact your METTLER TOLEDO representative.

MinWeigh
The MinWeigh function ensures that the weighing results are within defined tolerances appropriate to the requirements of your quality assurance system.

The service engineer will determine the required minimum weights based on your QA requirements and subsequently load these values into the balance. Up to 3 tare weights can be defined with the corresponding minimum weights. The service engineer will set the weighing parameters to the values required for the maintenance of tolerances.

See [Weighing parameters 66].

Note
After programming the balance, the service engineer will issue a certificate. This records the measurements and tolerances as well as corresponding tare and minimum weights for weighing. These settings cannot be changed by the user as long as the MinWeigh function is activated.

- The MinWeigh function is activated.

1. Press [].
 - A window with application-dependent settings appears.
2. Beside MinWeigh, tap the associated button.
 - MinWeigh window appears.
3. Tap [On] > [Define].
4. Change the settings and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Selects the method programmed by the service engineer according to your instructions. Up to 3 methods can be defined, e.g. [USP].</td>
<td>Any</td>
</tr>
<tr>
<td>Info</td>
<td>Displays information relating to the MinWeigh function (method, date of next test by the service engineer and required minimum weights based on reference tare weights defined by the service engineer). The information can be printed out by pressing the key.</td>
<td>Show</td>
</tr>
</tbody>
</table>
Factory setting: [Off].

7.1.13 Tare memory definition and activation

Navigation: [Main menu] > [Weighing] > [Tare Store]

This menu item can be used to define up to 10 tare weights available under the [Tare Store] function key and change their designations. The default designations for the tare memory are [T1] … [T10]. These can be replaced by specific names, e.g. designation of a tare container. The tare memory is subsequently available with the new designation under the function key.

Information on working with the tare memory, see [Taring options] 93.

Note
Deactivated tare memories [Off] cannot be selected under the [Tare Store] function key.

1 Press [4].
 ⇒ A window with application-dependent settings appears.

2 Beside Tare Store, tap the [Define] button.
 ⇒ Tare Store window appears.

3 The settings, e.g. T1 can be changed by tapping the associated button.

4 Tap [On] and subsequently the associated button.
 ⇒ An alphanumeric input window appears.

5 Enter the designation and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

Menu structure

<table>
<thead>
<tr>
<th>Main menu</th>
<th>Submenu</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 … T10</td>
<td>Off</td>
<td>See Parameter table</td>
</tr>
<tr>
<td></td>
<td>On</td>
<td></td>
</tr>
</tbody>
</table>

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Deactivated tare memory.</td>
<td>None</td>
</tr>
<tr>
<td>On</td>
<td>Activates the tare memory. Defines a designation. Defines the weight.</td>
<td>Name</td>
</tr>
</tbody>
</table>

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Defines a designation for the tare memory (max. 20 characters).</td>
<td>Any</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>Although the designation can consist of up to 20 characters, it is recommended to use short designations. A maximum of 10 characters can be displayed under the [Tare Store] function key.</td>
</tr>
<tr>
<td>Value</td>
<td>Defines a weight.</td>
<td>Any</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>Instead of entering the value, the respective tare container can be placed on the weighing pan and the button with the balance icon subsequently pressed. The weight is directly taken over.</td>
</tr>
</tbody>
</table>

Factory setting: [Off].
7.1.14 Automatic taring function settings

Navigation: [Setting] > [Weighing] > [AutoTare]

This menu item can be used to define whether and under which conditions the balance automatically interprets the first applied weight after zeroing as the tare weight. If the AutoTare function is activated, [On], the weight criterion for the automatic taring function can be defined via the button.

Information on working with the automatic taring function, see [Taring options] 93.

1 Press [AutoTare].

⇒ A window with application-dependent settings appears.

2 Beside AutoTare, tap the associated button.

⇒ AutoTare window appears.

3 Tap [On] and subsequently the associated button.

⇒ A numeric input window appears.

4 Enter the value and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Deactivated AutoTare function.</td>
<td>None</td>
</tr>
<tr>
<td>On</td>
<td>Activates the automatic taring function.</td>
<td>Limit</td>
</tr>
</tbody>
</table>

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit</td>
<td>This value defines the minimum weight that must be applied to the weighing pan so that it is automatically stored as the tare weight. If the weight is below the limits, it is not automatically transferred to the tare memory.</td>
<td>Any</td>
</tr>
</tbody>
</table>

Note

Instead of entering the weight, the lightest tare container can be placed on the weighing pan and the button with the balance icon subsequently pressed. The applied weight is directly taken over as a limit.

Factory setting: [Off].

7.1.15 Settings for SmartSens and ErgoSens

Navigation: [Setting] > [Weighing] > [Smart & ErgoSens]

This menu can be used to activate or deactivate both hands-free sensors (SmartSens) in the left and right top corner of the terminal.

A specific function can be activated by moving the hand over the respective sensor (maximum distance about 5 cm). The sensor beeps to confirm that it has recognized the command.

External sensors connected to the connections “Aux 1” and “Aux 2” at the rear of the balance can be configured with the ErgoSens settings. ErgoSens is an optionally available external sensor. A maximum of 2 external ErgoSens can be connected to the balance.

Each of the two SmartSens and ErgoSens can be assigned one of the following functions by tapping the associated button.

Note

If one of the functions that emulate a button at the terminal is activated, the respective symbol (->0<-, ->T<-, or [F]) in the status bar below the respective sensor lights up. For all other settings that emulate function keys with the same name, the green F (Function) symbol lights up. No symbol lights up when the sensor is deactivated.

1 Press [Smart & ErgoSens].

⇒ A window with application-dependent settings appears.
2 Tap Smart & ErgoSens > [Define].
⇒ A selection window appears.
3 Select the required menu item, e.g. SmartSens left.
⇒ A selection window appears.
4 Select the function and confirm with [OK].
You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartSens left</td>
<td>Activates/deactivates the left SmartSens.</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Door = opens/closes the glass draft shield (doors).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PreTare = opens the input window for numerical entry of a fixed tare weight (subtraction of tare weight).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transfer = transfers the stable, formatted weight via the interface.</td>
<td></td>
</tr>
<tr>
<td>SmartSens right</td>
<td>Activates/deactivates the right SmartSens.</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Door = opens/closes the glass draft shield (doors).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PreTare = opens the input window for numerical entry of a fixed tare weight (subtraction of tare weight).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transfer = transfers the stable, formatted weight via the interface.</td>
<td></td>
</tr>
<tr>
<td>ErgoSens 1 (Aux1)</td>
<td>Activates/deactivates the ErgoSens 1.</td>
<td>Off*</td>
</tr>
<tr>
<td></td>
<td>Door = opens/closes the glass draft shield (doors).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PreTare = opens the input window for numerical entry of a fixed tare weight (subtraction of tare weight).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transfer = transfers the stable, formatted weight via the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AntiStatic Kit = to activate the ionizer, it must be selected appropriate to the connection used.</td>
<td></td>
</tr>
<tr>
<td>ErgoSens 2 (Aux2)</td>
<td>Activates/deactivates the ErgoSens 2.</td>
<td>Off*</td>
</tr>
<tr>
<td></td>
<td>Door = opens/closes the glass draft shield (doors).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PreTare = opens the input window for numerical entry of a fixed tare weight (subtraction of tare weight).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transfer = transfers the stable, formatted weight via the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AntiStatic Kit = to activate the ionizer, it must be selected appropriate to the connection used.</td>
<td></td>
</tr>
</tbody>
</table>

* Factory setting

7.1.16 Settings for electrostatic detection

Navigation: [Home] > [Weighing] > [StaticDetect] > StaticDetect Setup

Electrostatic charges on weighing containers or samples can lead to incorrect measurement. The electrostatic detection is used to measure electrostatic charges and quantify their influence on the weighing result. If a result exceeds a user-defined threshold value, an appropriate warning is generated.

The visual display in the weighing chamber shows blue during measurement. If a relevant charge is detected, the visual display flashes as an additional warning next to the warning message on the terminal.

The sample can be discharged by holding and turning it in front of the optional ionizer for several seconds. Turning the sample neutralizes enveloping charges.
- Ionizer is activated under the used connection **ErgoSens 1 (Aux1)** or **ErgoSens 2 (Aux2)**.

1. Press \([\text{ES-Det}.]\).
 - A window with application-dependent settings appears.
2. Beside **StaticDetect Setup**, tap the associated button.
 - A selection window appears.
3. Select the function and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection mode</td>
<td>Defines the electrostatic detection mode.</td>
<td>Automatic*</td>
</tr>
<tr>
<td>Display weighing error</td>
<td>Shows or hides the size of an error in the StaticDetect message.</td>
<td>Yes*</td>
</tr>
<tr>
<td>Detection threshold</td>
<td>Defines the threshold value for a warning message.</td>
<td>Value in [mg]</td>
</tr>
</tbody>
</table>

* Factory setting

7.1.16.1 Defining threshold

Navigation: \([\text{ES} > [\text{Weighing}] > [\text{ES-Det}.] > \text{Function Keys} > [\text{ES-thresh}.]\)

In this menu item you can specify the settings of the function key \([\text{ES-thresh}.]\). With the function key to set the input mode, the threshold and the target weight.

- Function key is activated.

1. Press \([\text{ES-thresh}.]\).
 - Window with application-dependent settings is displayed.
2. Tap the corresponding button.
3. Change the settings and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input mode</td>
<td>Definition of the input mode.</td>
<td>Fix*</td>
</tr>
<tr>
<td>Detection threshold [g]</td>
<td>Enter a value for the upper limit. Default threshold is 40 digits (mg representation to be calculated from balance resolution).</td>
<td>0.001 mg … 100 mg</td>
</tr>
</tbody>
</table>

Calculated

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighing accuracy</td>
<td>Enter a value in percent for the weighing accuracy.</td>
<td>0.1% ... 100%</td>
</tr>
<tr>
<td>Target weight</td>
<td>Enter a value in mg for the target weight.</td>
<td>0.001 mg … 100 mg</td>
</tr>
</tbody>
</table>

* Factory setting
7.1.17 Settings for the optional anti-static kit (ionizer)

Navigation: [navigate] > [Weighing] > [] > Ionizer Setup

The optional anti-static kit eliminates the build-up of electrostatic charges on weighing objects by ionization. The ionizer must be connected to one of the two connections "Aux 1" or "Aux 2" at the rear of the balance.

- Ionizer is activated under the used connection ErgoSens 1 (Aux1) or ErgoSens 2 (Aux2).

1. Press [].
 ⇒ A window with application-dependent settings appears.

2. Beside Ionizer Setup, tap the associated button.
 ⇒ A selection window appears.

3. Select the function and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>After door opened</td>
<td>Defines the ionizing status.</td>
<td>Inactive</td>
</tr>
<tr>
<td></td>
<td>Inactive = no ionizing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active = after opening the draft shield, ionizing takes place continuously until the draft shield (doors) is closed again (maximum 10 minutes).</td>
<td></td>
</tr>
<tr>
<td>After door closed</td>
<td>Defines the ionizing time (in seconds).</td>
<td>0 … 1000 (0)*</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the time is set to "0" seconds, no ionizing takes place after closing the draft shield (doors).</td>
<td></td>
</tr>
</tbody>
</table>

* Factory setting

7.2 Working with the weighing application

Navigation: [navigate] > [Weighing]

This section describes the use of various functions of the Weighing application in practice.

7.2.1 Changing the weighing result resolution

The balance is set by default so that the weighing result is displayed with the maximum resolution, depending on the particular model (corresponding to 1d). The weighing result resolution can be changed at any time.

Note
These function keys are inactive when the MinWeigh function is active or a free weighing unit is used.

- Function keys are activated.
 - Tap the respective function key.
 ⇒ When the respective function key is tapped again, the balance displays the result with normal resolution again.

1/2d	Displays the last decimal place in increments of 2.
1/5d	Displays the last decimal place in increments of 5.
1/10d	Displays the result in a 10x lower resolution.
1/100d	Displays the result in a 100x lower resolution.
1/1000d	Displays the result in a 1000x lower resolution.

7.2.2 Taring options

The tare weight is normally determined by placing the weighing container on the balance and subsequently pressing the [Tare] key. The balance offers further taring options, which facilitate daily working procedures.
Manual entry of the tare weight (subtraction of tare weight or PreTare)

If the same weighing container is used over an extended period, the weight can be entered manually. This saves taring when placing the weighing container on the balance. The tare weight is displayed as a negative value when the weighing container is removed. When the container is placed on the balance again, the display shows zero and the balance is immediately ready to use.

1. Tap [PreTare].
2. Enter the required tare weight.
3. Confirm with [OK] to activate subtraction of the tare weight.

Using the automatic taring function

The balance can be configured to always automatically interpret the first applied weight as the tare weight.

1. Press [AutoTare] (otherwise the automatic acceptance of the tare weight will not function).
2. Place an empty container on the weighing pan.

Working with the tare memories

If different tare containers are used, their weights can be stored and displayed by pressing a button at any time whilst weighing. Up to 10 tare memories can be defined.

1. Tap [Tare Store].
2. Tap the required memory.

7.2.3 Working with the lot counter

The lot counter places a number in front of each weight during protocol printing, which is automatically incremented by 1 with each printout.
Note
When working with the lot counter, it is recommended to also activate the associated information field. This allows the current lot counter reading to be displayed at any time.

See [Selecting information fields ➤ 80].

Each time a printout is started with the [] button, the weights are preceded by a lot counter, which is incremented by 1 with each new printout. When the lot counter reaches the maximum value of 999, the numbering starts at 1 again.

Note
The lot counter also functions with automatic protocol printout.

See [Specifications for automatic protocol printout ➤ 80].

Each time a printout is started with the [] button, the weights are preceded by a lot counter, which is incremented by 1 with each new printout. When the lot counter reaches the maximum value of 999, the numbering starts at 1 again.

Note
The lot counter also functions with automatic protocol printout.

See [Specifications for automatic protocol printout ➤ 80].

A printer is connected and activated as an output device in the peripheral device settings.

To print out the settings, press [].

Example: Printout

1 N	135.87 g
2 N	184.24 g
3 N	117.96 g

Lotcounter

Function key is activated.

1 Tap [Lotcounter].

A numeric input window appears.

2 Enter the start value for the lot counter (1 ... 999).

The value 0 is preset by default, i.e. the lot counter is deactivated.

3 Confirm with [OK] to activate the lot counter.

7.2.4 Working with identifications

Identifications are descriptive texts for individual weighing processes that allow perfect assignment of weighing objects to specific customer orders. The identifications are also printed on the protocols (or transferred to a connected computer).

The 4 identifications are designated by default with [ID1], [ID2], [ID3] and [ID4]. These designations can be replaced with other titles to suit the particular application (max. 20 characters). The selected designations (e.g. customer for the [ID1], order for the [ID2], lot for the [ID3] and batch for the [ID4]) are subsequently available under the [ID] function key.

Note
If the IDs are deactivated, the function key is grayed and cannot be actuated. In this case, the IDs must first be activated before they can be used.

See [Definition of identifications and protocol headers ➤ 87].

When working with identifications, it is recommended to also activate the respective information fields. The information fields show the designations entered for the identifications.

See [Selecting information fields ➤ 80].

If the weighing protocol is defined in such a way that the identifications are also printed, the defined ID designations, e.g. [Customer] and the entered text, e.g. METTLER TOLEDO are printed out.

A printer is connected and activated as an output device in the peripheral device settings.

To print out the settings, press [].
Example: Printout

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Client</th>
<th>Order</th>
<th>Lot</th>
<th>Sample</th>
<th>N</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.Jul</td>
<td>2014</td>
<td>17:21 METTLER TOLEDO</td>
<td>MT-18/2004</td>
<td>18/2B</td>
<td>1/4</td>
<td>242.83 g</td>
<td>20.76 g</td>
<td>263.59 g</td>
</tr>
</tbody>
</table>

- Function key is activated.
 1. Tap [ID].
 - A selection window with the available identifications appears.
 2. Tap the associated button to be processed, e.g. [Customer].
 - An alphanumeric input window appears.
 3. Enter the designation, e.g. METTLER TOLEDO and confirm with [OK].
 - When all entries have been made, the selected identifications can be rechecked against the information fields in the display.
 - All identification texts remain stored until they are replaced with new ones.

7.2.5 Weighing-in to a nominal weight

The [Weighing] application offers additional functions that facilitate weighing-in to a defined nominal weight.

Initial settings

To enter the nominal weight and the associated tolerance range, enable the function keys listed below. Also enable the data fields with the same names so that the defined values will be displayed.

- **Target&Tol** — Enable function keys.
- **Nominal**
- **+Tolerance**
- **-Tolerance**

Procedure with control center

- Function key are activated.
 1. Tap [Target&Tol].
 - A selection window appears.
 2. Tap [Nominal].
 - A numeric input window appears.
 3. Enter the required value.
 - If a weight corresponding to the nominal weight is already on the balance, it can be directly taken over by tapping the button with the balance icon.
 - Check the weighing unit to the right of the nominal weight.
 - A selection of available units can be displayed by tapping the weighing unit.
Note
Units are not converted automatically. When a value is entered in a unit, it is retained, even when the unit is changed.

4 Confirm with [OK] to activate the nominal weight.
5 Beside [Tolerance Mode], tap the [Symmetric] or [Asymmetric] button.
 ⇒ A selection window appears.
6 Tap [±/ Tolerance] or [+Tolerance] and [-Tolerance]
 ⇒ A numeric input window appears.
7 Enter the required value.
 Both tolerances are set to 2.5% by default. Instead of a percentage, an absolute tolerance can be entered in any unit, e.g. [g].
8 Confirm with [OK] to activate the tolerance.
 ⇒ The SmartTrac graphic weighing-in aid with tolerance marks to facilitate weighing-in to the nominal weight appears.
 ⇒ Samples can be roughly weighed until the lower tolerance limit is reached and subsequent additions made up to the nominal weight.

Procedure without control center

- Function keys are activated.
1 Tap [Nominal].
 ⇒ A numeric input window appears.
2 Enter the required value.
 - If a weight corresponding to the nominal weight is already on the balance, it can be directly taken over by tapping the button with the balance icon.
 Check the weighing unit to the right of the nominal weight.
 A selection of available units can be displayed by tapping the weighing unit.
 Note
Units are not converted automatically. When a value is entered in a unit, it is retained, even when the unit is changed.
3 Confirm with [OK] to activate the nominal weight.
4 Tap [+Tolerance] and/or [-Tolerance]
 ⇒ A numeric input window appears.
5 Enter the required value.
 Both tolerances are set to 2.5% by default. Instead of a percentage, an absolute tolerance can be entered in any unit, e.g. [g].
6 Confirm with [OK] to activate the tolerance.
 ⇒ The SmartTrac graphic weighing-in aid with tolerance marks to facilitate weighing-in to the nominal weight appears.
 ⇒ Samples can be roughly weighed until the lower tolerance limit is reached and subsequent additions made up to the nominal weight.

7.2.6 Working with the "MinWeigh" function

The MinWeigh function ensures that the weighing results are within defined tolerances appropriate to the requirements of your quality assurance system. This function must be activated and programmed by a service engineer.

It also recommended to activate the three information fields MinWeigh, RefTare and Tare.

Note
If several reference tare weights (and the associated minimum weights) were programmed by the service engineer, the required minimum weight automatically changes appropriate to the applied tare weight.
The weighing result can be printed with the [Print] key. The example printout shows part of a sample protocol containing specifications for the MinWeigh function (method, reference tare weight and required minimum weight) as well as the current weights. The asterisk to the left of the net weight indicates that the minimum weight in the example was not reached and the value does not satisfy the quality assurance requirements.

- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [Print].

Example: Printout

<table>
<thead>
<tr>
<th>MW Method</th>
<th>USP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. Tare</td>
<td>120.00 g</td>
</tr>
<tr>
<td>MinWeigh</td>
<td>20.00 g</td>
</tr>
<tr>
<td>*N</td>
<td>17.03 g</td>
</tr>
<tr>
<td>T</td>
<td>46.85 g</td>
</tr>
<tr>
<td>G</td>
<td>63.88 g</td>
</tr>
</tbody>
</table>

- MinWeigh function is activated.
 1. Activate the MinWeigh, RefTare and Tare information fields.
 - The values and references are displayed in the information field.
 - In the display to the left of the weighing result is a small weight icon with the character "<".
 2. Press [0].
 - Sets the display to zero.
 3. Place the tare weight (weighing container) on the weighing pan and press [T] to tare the balance.
 - The balance determines the tare weight and displays it in the Tare information field.
 - The Net symbol (net weight) is displayed next to the weight display.
 4. Place the weighing object on the balance, e.g. 20 g.
 - During the weighing operation, the weight is initially displayed in a light color to indicate that the minimum weight has not yet been reached.
 - When the required minimum weight is reached, the weight is displayed in dark digits and the small weight icon extinguishes.

Note

If the status icon (small weight icon with clock) appears at the top right of the display (below the date and time), the next test for the MinWeigh function is due. Contact the relevant customer service department. A service engineer will perform the MinWeigh test as quickly as possible.

Example

When working according to GMP, the permissible tolerance is 1%, 2 s. When working according to USP, this is 0.1 %, 2 s.

7.3 Balance adjustment and testing

Navigation: [Setup] > [Weighing]

Like any precision instrument, the balance must be adjusted at regular intervals. The balance offers extensive options for adjustment and testing.

Deviations must be able to be identified at an early stage and process tolerances checked. The risk can be minimized by regular testing.

The adjustment is intended for adjusting the sensitivity of the balance. For this purpose, at least one reference weight is placed on the weighing pan either manually or motorized. This is weighed and the indicated weight is stored. The sensitivity of the balance is subsequently corrected by the required amount.

The test is intended for testing the sensitivity of the balance.

See [Settings for adjustments and tests > 39].
The balance is set to full automatic adjustment with ProFACT at the factory. ProFACT adjusts the balance fully automatically based on predefined criteria. Manual adjustments and/or tests can be carried out as required with the internal or an external weight.

If a printer is connected to the balance, the adjustments can be printed out according to user-specific settings.

See [Protocol – Definition of adjustment and test reports 55].
- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [Print].

The following descriptions assume that the [Adjust.int], [Adjust.ext], [Test int] and [Test ext] function keys are activated for adjustment and tests.

7.3.1 Adjustment

7.3.1.1 Adjustment with internal weight/ProFACT

ProFACT adjusts the balance fully automatically based on predefined criteria.

Note

ProFACT is activated several times in the first 24 hours after connection to the power supply, irrespective of the selected criteria.

After meeting a predefined time and/or temperature criterion, the small ProFACT status icon appears at the top right of the display (below the date and time). The balance thus indicates the need to make a ProFACT adjustment.

1. Unload the balance.
2. Do not select any key for 2 minutes.
 ⇒ Adjustment starts automatically.

During the adjustment, a window with information on the current adjustment is displayed. If the balance is in use at the time of adjustment, adjustment can be ended with the [Cancel] button. Adjustment is restarted by the balance at the next opportunity.

When adjustment is complete, the balance automatically returns to the application. The small weight icon at the top right of the display extinguishes. Each adjustment is automatically recorded based on the selections made in the system settings for recording adjustments.

The described procedure is based on the factory setting. The procedure for internal adjustment can be extended with internal tests with Advanced Options.

See [Advanced options 51].

Manual adjustment activation

- [Adjust.int] function key is activated.

1. Tap [Adjust.int].
 ⇒ An information window opens.
 ⇒ The motorized lowering and lifting motion of the internal weight is audible.
2. If Adjustment done appears, confirm with [OK].
3. If Adjustment abort appears:
 - If adjustment is aborted, confirm with [OK].
 - If adjustment is aborted by the balance, tap [Retry].

7.3.1.2 Adjustment with external test weight

Note

Depending on the country-specific requirements, adjustment with an external weight for calibration balances may not be available.
When a specific day or time is reached, the small adjustment icon appears at the top right of the display (below the date and time). This is an indication that the balance requires adjustment.

The balance then requests adjustment at the defined time. The last selected test weight is always used for automatic external adjustment.

- **Autom. ext. Adjust.** is activated.
- **Test/Adj. Weight** are defined.
 1. Tap [Yes] to start the adjustment sequence described below.
 2. When is [Later] tapped, a request for adjustment is repeated after 15 minutes.

Note
The small weight icon (status icon) for automatic external adjustment at the top right of the display, extinguishes after successful adjustment or if adjustment is declined at the second request [No]. The balance automatically returns to the application. Each adjustment is automatically recorded based on the selections made in the system settings for recording adjustments.

Manual adjustment activation

- **Adjust.ext**

 Adjustment of the balance with an external test weight can be initiated by tapping this function key. This can take place as required.

Adjustment sequence

- [Adjust.ext] function key is activated.
- **Test/Adj. Weight** are defined.
 1. Tap [Adjust.ext].
 - A list is displayed for selection of the test weight.
 2. Select a test weight by tapping.
 - Adjustment starts.
 3. Use the correct test weight. The ID and certificate number of the respective test weight are displayed if available.

 Note
 Ensure that the correct test weight is used, otherwise the adjustment will be aborted with an error message.
 - The required weight flashes at the bottom of the window and adjustment takes place automatically.
 4. Remove the test weight from the weighing pan when adjustment is complete.
 - When the process is complete, one of the following messages appears.
 5. If **Adjustment done** is displayed, confirm with [OK].
 6. If **Adjustment abort** appears:
 - If adjustment is aborted, confirm with [OK].
 - If adjustment is aborted by the balance, tap [Retry].

7.3.2 Testing

7.3.2.1 Testing the adjustment with internal weight

The test is intended for testing the sensitivity of the balance.

- **Test int**

 The balance can be tested for correct adjustment using the internal weight by tapping this function key. This can be carried out as required.
[Test int] function key is activated.
1 Tap [Test int].
 ⇒ An information window opens.
 ⇒ The motorized lowering and lifting motion of the internal weight is audible.
 ⇒ When the process is complete, one of the following messages appears.
2 If Test done appears, confirm with [OK].
3 If Test Aborted! appears:
 - If the test is aborted by the user, confirm with [OK].
 - If the test aborted by the balance, tap [Retry].

7.3.2.2 Testing the adjustment with external test weight

When a specific day or time is reached, the small test icon appears at the top right of the display (below the date and time). This is an indication that the balance requires testing. For the automatic external test, the last selected test weight is always used.

- Autom. ext. Test is activated.
- Test/Adj. Weight are defined.
1 Tap [Yes] to start the test sequence described below.
2 When [Later] is tapped, a request for testing the adjustment is repeated after 15 minutes.

Note
The small weight icon (status icon) for automatic external adjustment at the top right of the display, extinguishes after successful testing or if the test is declined at the second request [No].

Manual test activation

[Test ext] function key is activated.
- Test/Adj. Weight are defined.
1 Tap [Test ext].
 ⇒ A list is displayed for selection of the test weight.
2 Select a test weight by tapping.
 ⇒ The test starts.
3 Use the correct test weight. The ID and certificate number of the respective test weight are displayed if available.
 Note
 Ensure that the correct test weight is used, otherwise the test sequence will be aborted with an error message.
 ⇒ The required weight flashes at the bottom of the window and the test sequence takes place automatically.
4 Remove the test weight from the weighing pan when the test is complete.
 ⇒ When the test is complete, one of the following messages appears.
5 If Adjustment done is displayed, confirm with [OK].
6 If Adjustment abort appears:
 - If the test is aborted by the user, confirm with [OK].
 - If the test aborted by the balance, tap [Retry].

7.3.3 Protocols

The detail of the record depends on the selected settings.

See [Protocol – Definition of adjustment and test reports 55].
- [Adj. History] function key is activated.

1 Adjustments and tests can be displayed by tapping [Adj. History].
 ⇒ An information window opens.
2 Press [] to print.
3 To exit the menu item, tap [OK].

7.3.3.1 Adjustment and test records (sample records)

Example: Printout

<table>
<thead>
<tr>
<th>Internal or ProFACT adjustment protocol</th>
<th>External adjustment protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Internal adjustment --</td>
<td>- External adjustment --</td>
</tr>
<tr>
<td>METTLER TOLEDO</td>
<td>METTLER TOLEDO</td>
</tr>
<tr>
<td>WeighBridge SNR: 1234567890</td>
<td>WeighBridge SNR: 1234567890</td>
</tr>
<tr>
<td>Terminal SNR: 1234567891</td>
<td>Terminal SNR: 1234567891</td>
</tr>
<tr>
<td>Balance ID Lab A/1</td>
<td>Balance ID Lab A/1</td>
</tr>
<tr>
<td>Temperature 21.2 °C</td>
<td>Temperature 20.8 °C</td>
</tr>
<tr>
<td>Balance is levelled</td>
<td>Balance is levelled</td>
</tr>
<tr>
<td>Adjustment done</td>
<td>Adjustment done</td>
</tr>
<tr>
<td>Signature</td>
<td>Signature</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Note</td>
<td>Note</td>
</tr>
</tbody>
</table>
No signature line is printed for a ProFACT adjustment.
7.4 Working with the test sequence function

Navigation: [Weighting] > [Weighing]

Define test sequences, test (method) and weight to be used. The user is guided through the test with the display of clear instructions. The test should be carried out according to GWP® or other QM systems. All parameters and values for the test sequence have been defined and the test sequence assigned to a task. Define tasks - when and how the test sequence will be carried out. If standard is selected under the [Preparation Instructions] menu item, preparatory instructions are displayed in the test sequence. These correspond to the typical SOP standard. These instructions must be followed and confirmed with [OK] before the rest of the test sequence can be continued.

Note
The extensiveness of the test depends on the settings selected (e.g. Preparation Instructions, Action if Failure, AutoZero).

See [Test sequences > 41] and Configuration of test sequence parameters.

On completion of the test, the measurements are printed together with the results.
- A printer is connected and activated as an output device in the peripheral device settings.
 - To print out the settings, press [Print].

A method describes the type of test to be carried out and defines the main purpose of a test sequence. There are 8 different methods available.

7.4.1 Starting a task

A task can be started either automatically or manually depending on the particular settings.
When a specific day or time is reached, the small GWP icon appears at the top right of the display (below the date and time). This is an indication that the balance requires a task to be performed. An instruction window is simultaneously displayed, which guides the user through the test. These instructions must be followed:

- Test sequence is defined and assigned to a task.
 1. Follow the instructions and confirm with [OK].
 2. Remove all weights and confirm with [OK].
 3. Level the balance and confirm with [OK].
 4. Follow further instructions depending on the selected task.

Note
The instruction window is closed and the small GWP icon for the task at the top right of the display extinguishes on successful completion of the test.

Manual test activation

- **Test Sequence**
 A test sequence can be started manually by tapping the function key.

- **Test Sequence** function key is activated.
- Test sequence is defined and assigned to a task.
 1. Tap **Test Sequence**.
 - A selection window with test sequences appears.
 2. Tap the test sequence.
 - An instruction window appears.
 - The test sequence was started
 - Follow the instructions below:
 1. Clean the weighing pan.
 2. Level the balance.
 3. Switch on the printer if necessary.
 4. Have the test weights ready.
 5. Have the weight tweezers/fork ready.
 - When all instructions have been followed, confirm with [OK] and follow further test sequence instructions.
 3. Remove all weights and confirm with [OK].
 4. Level the balance and confirm with [OK].

7.4.1.1 EC - eccentric load test

The purpose of the EC method (eccentric load test) is to ensure that every eccentric load deviation is within the necessary user SOP tolerances.

The result corresponds to the highest of the 4 determined eccentric load deviations.

Method
The procedure is as follows:
 1. Zero the balance.
 2. Place the test weight in the center and confirm with [OK].
 3. Place the test weight at the front left and confirm with [OK].
 4. Place the test weight at the rear left and confirm with [OK].
 5. Place the test weight at the rear right and confirm with [OK].
 6. Place the test weight at the front right and confirm with [OK].
 7. Remove all weights and confirm with [OK].
8 Zero the balance.
 ⇒ The test results are displayed together with the results.
9 To exit the menu item, tap [OK].
10 To abort, tap [C].
 ⇒ The test is printed out.

7.4.1.2 **RP1 - repeatability test**
The **RP1** method calculates the mean and standard deviation (Symbol s) of a series of measurements with a single test weight in order to determine the repeatability of the balance.

Method
The procedure is as follows:
1 Zero the balance.
2 Place the test weight on the balance and confirm with [OK].
3 Remove the test weight and confirm with [OK].
4 Repeat steps 2 and 3.
5 Zero the balance.
 ⇒ The test results are displayed together with the results.
6 To exit the menu item, tap [OK].
7 To abort, tap [C].
 ⇒ The test is printed out.

7.4.1.3 **RPT1 - repeatability test with tare weight**
The **RPT1** method calculates the mean and standard deviation (Symbol s) of a series of measurements with two test weights in order to determine the repeatability. In contrast to the **RP1** method, a second test weight is used to simulate the use of a tare container.

Method
The procedure is as follows:
1 Zero the balance.
2 Place the tare weight on the balance and confirm with [OK].
3 Tare the balance.
4 Place the test weight on the balance and confirm with [OK].
5 Remove the test weight and confirm with [OK].
6 Repeat steps 4 and 5.
7 Zero the balance.
 ⇒ The test results are displayed together with the results.
8 To exit the menu item, tap [OK].
9 To abort, tap [C].
 ⇒ The test is printed out.

7.4.1.4 **SE1 - sensitivity test with one weight**
The **SE1** method tests the sensitivity of the balance with one test weight.

Method
The procedure is as follows:
1 Zero the balance.
2 Place the test weight on the balance and confirm with [OK].
3 Remove the test weight and confirm with [OK].
4 Zero the balance.
 ⇒ The test results are displayed together with the results.
5 To exit the menu item, tap [OK].
6 To abort, tap [C].
 ⇒ The test is printed out.

7.4.1.5 **SE2 - sensitivity test with two weights**

The **SE2** method tests the sensitivity of the balance with two test weights.

Method

The procedure is as follows:
1 Zero the balance.
2 Place test weight 1 on the balance and confirm with [OK].
3 Remove test weight 1 and confirm with [OK].
4 Zero the balance.
5 Place test weight 2 on the balance and confirm with [OK].
6 Remove test weight 2 and confirm with [OK].
7 Zero the balance.
 ⇒ The test results are displayed together with the results.
8 To exit the menu item, tap [OK].
9 To abort, tap [C].
 ⇒ The test is printed out.

7.4.1.6 **SERVICE - reminder**

The **SERVICE** method is more a reminder than a method. It is normally set to perform regular checks of various data (dates) in the background. It is used e.g. as a reminder for the next service date or MinWeigh date. The date is checked on a regular basis and a message appears when the defined task is due. The **SERVICE** method can also be used as early pre-warning.

- [Test Sequence] function key is activated.
- Test sequence is defined and assigned to a task.
 - Carry out the task.

7.4.1.7 **SET1 - sensitivity test with tare and one test weight**

The **SET1** method tests the sensitivity of the balance with two test weights. The first test weight is used to simulate a tare container.

Method

The procedure is as follows:
1 Zero the balance.
2 Place the tare weight on the balance and confirm with [OK].
3 Tare the balance.
4 Place the test weight on the balance and confirm with [OK].
5 Remove the test weight and confirm with [OK].
6 Zero the balance.
 ⇒ The test results are displayed together with the results.
7 To exit the menu item, tap [OK].
8 To abort, tap [C].
 ⇒ The test is printed out.
7.4.1.8 SET2 - sensitivity test with tare and two test weights

The SET2 method tests the sensitivity of the balance with three test weights. The first test weight (tare weight) is used to simulate a tare container.

Method

The procedure is as follows:

1. Zero the balance.
2. Place test weight 1 on the balance and confirm with [OK].
3. Remove test weight 1 and confirm with [OK].
4. Zero the balance.
5. Place the tare weight on the balance and confirm with [OK].
6. Tare the balance.
7. Place test weight 2 on the balance and confirm with [OK].
8. Remove all weights and confirm with [OK].

 ⇒ The test results are displayed together with the results.

10. To exit the menu item, tap [OK].
11. To abort, tap [C].

 ⇒ The test is printed out.
8 Dosing Application

The Dosing application allows you to dose solids, liquids, pasty substances and prepare solutions. If a peripheral device is connected, the sample data can be labeled individually.

To work with the dosing application, you need to upgrade your XPE balance with one of the following devices:

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid module (QLX45)</td>
<td>Doses liquid.</td>
</tr>
<tr>
<td>Powder module (Q2)</td>
<td>Doses powder. It can be used in combination with a pump module and liquid dosing head to dose liquid as well.</td>
</tr>
</tbody>
</table>

Optional:

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autosampler (QS30) (option to powder module)</td>
<td>Doses up to 30 samples automatically. The autosampler is always used in combination with the powder module.</td>
</tr>
</tbody>
</table>

For information on how to work with the dosing application and the respective devices, see the Operating Instructions of the devices.

All application settings are saved under the active user profile.

Selecting the application

1. Press \[\text{[Dosing]}\].
2. Tap the \[\text{[Dosing]}\] icon in the selection window.
 - The selected application is active.
 - Some of the specific function keys and information fields for dosing are activated by default.
 - The balance is ready for dosing.

8.1 Settings for the dosing application

Various specific settings are available for dosing. Applications can be adapted to suit specific requirements.

The arrow buttons can be used to page forward or back to a menu page.

- Application is activated.

1. Press \[\text{[General settings]}\].
 - A window with application-dependent settings appears.
2. Select the required menu item.
3. Change the settings and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosing steps</td>
<td>Defines the option Dosing steps that leads step-by-step through the dosing procedure.</td>
<td>See [Configuring dosing steps (\rightarrow) 109]</td>
</tr>
<tr>
<td>Powder module</td>
<td>Configures the Powder module.</td>
<td>See [Configuring powder module (\rightarrow) 109]</td>
</tr>
<tr>
<td>Liquid module</td>
<td>Configures the Liquid module.</td>
<td>See [Configuring liquid module (\rightarrow) 111]</td>
</tr>
<tr>
<td>Data output</td>
<td>Configures the Data output.</td>
<td>See [Defining data output (\rightarrow) 112]</td>
</tr>
<tr>
<td>Head def. data</td>
<td>Specifies the displayed dosing head data.</td>
<td>See [Defining dosing head definition data (\rightarrow) 118]</td>
</tr>
<tr>
<td>General settings</td>
<td>Defines the General settings.</td>
<td>See [General settings (\rightarrow) 118] and [Specific function keys for dosing (\rightarrow) 119]</td>
</tr>
</tbody>
</table>
8.1.1 Configuring dosing steps

Navigation: [Home] > [Dosing] > [Dosing steps] > [Define]

The dosing steps can be specified by selecting the different steps which prompt you to enter data for each dosing cycle.

Note
All these steps can also be defined via the function keys.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosing steps (solid)</td>
<td>Specifies the order of steps in a dosing cycle for solids.</td>
<td>User ID*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing steps (solution)</td>
<td>Specifies the order of steps in a dosing cycle for solutions. Density param.</td>
<td>User ID*</td>
</tr>
<tr>
<td></td>
<td>Defines the density of the liquid.</td>
<td></td>
</tr>
<tr>
<td>Dosing steps (liquid)</td>
<td>Specifies the order of steps in a dosing cycle for liquids. Density param.</td>
<td>User ID*</td>
</tr>
<tr>
<td></td>
<td>Defines the density of the liquid.</td>
<td></td>
</tr>
</tbody>
</table>

* Factory setting

8.1.2 Configuring powder module

Navigation: [Home] > [Dosing] > [Powder module] > [Define] > [Mounted] > [Define]

CAUTION
Do not select one of these functions unless a METTLER TOLEDO service engineer had mounted the hardware. Otherwise the system may work inaccurately.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder dosing mode</td>
<td>In this menu the method to control the powder dosing unit can be defined.</td>
<td>Standard*</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This proactive mode can be used for most loose or homogeneous powders.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This reactive mode can be used with compact or inhomogeneous powders.</td>
<td></td>
</tr>
<tr>
<td>Tolerance Mode</td>
<td>+/- Tolerance</td>
<td>+/- Tolerance*</td>
</tr>
<tr>
<td></td>
<td>This parameter can be used in most cases (e.g. tolerance range between -2% and +2% percent).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+Tolerance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In a production environment negative tolerances are often not allowed (e.g. tolerance range between 0.1% and 2%).</td>
<td></td>
</tr>
<tr>
<td>Front door</td>
<td>Defines the behaviour of the front door.</td>
<td>See [Configuring the front door] 110</td>
</tr>
</tbody>
</table>
Auto sampler Configures the Auto sampler. See [Configuring the autosampler](#)

Tapper Configures the Tapper. See [Configuring the tapper](#)

SafePos After every dosing, the option SafePos moves the dosing head to a safe position to prevent touching the sample container. Mounted* | Unmounted

Maintenance To automatically adjust the Front door. Note
The adjustment of the front door may be required if the front door does not close completely or if there is a sound when the door hits the lower stop.
To adjust the front door, see Quantos Powder Module Operating Instructions.

* Factory setting

8.1.2.1 Configuring the front door

* ![Navigation:](Dosing Application > Dosing > Powder module > Define > Mounted > Define > Front door > Define)*

In this submenu the behaviour of the front door can be defined. The door movement can be linked to a particular procedure or action.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front door</td>
<td>Mounted</td>
<td>The front door moves.</td>
</tr>
<tr>
<td></td>
<td>Unmounted</td>
<td>The front door doesn't move.</td>
</tr>
<tr>
<td>Linked with</td>
<td>Dosing</td>
<td>Door movement is linked to the dosing procedure.</td>
</tr>
<tr>
<td></td>
<td>Un/Lock</td>
<td>Door movement is linked to the function key [Un/Lock].</td>
</tr>
<tr>
<td></td>
<td>MinWeigh test</td>
<td>Door movement is linked to the function MinWeigh test.</td>
</tr>
<tr>
<td></td>
<td>Int. Adj, int. Tst</td>
<td>Door movement is linked to any internal adjustment or test.</td>
</tr>
</tbody>
</table>

* Factory setting

8.1.2.2 Configuring the autosampler

* ![Navigation:](Dosing Application > Dosing > Powder module > Define > Mounted > Define > Auto sampler > Define)*

Note
Do not select one of these functions unless a METTLER TOLEDO Service Engineer has mounted the hardware.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto sampler</td>
<td>To define if the autosampler is connected.</td>
<td>Mounted</td>
</tr>
</tbody>
</table>

* Factory setting
8.1.2.3 Configuring the tapper

The tapper improves a low powder flow when the powder is not flowing smoothly.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity</td>
<td>Defines the intensity of the option Tapping before dosing.</td>
<td>10 ... 100 (50*)</td>
</tr>
<tr>
<td>Duration [s]</td>
<td>Defines the duration of the option Tapping before dosing.</td>
<td>1 s ... 10 s (1 s*)</td>
</tr>
<tr>
<td>Tapping before dosing</td>
<td>Tapper starts automatically before dosing.</td>
<td>Off*</td>
</tr>
<tr>
<td>Tapping while dosing</td>
<td>Tapper works during the dosing.</td>
<td>Off</td>
</tr>
</tbody>
</table>

* Factory setting

Note
Deactivate tapping when it interferes with your workflow or when your powder must not be shaken. In this case we propose to select the function key [Tapper] to start a tapping cycle manually (using the settings Intensity and Duration [s]).

Note
If tapping worked with your powder but does not improve the powder flow, increase the values for Intensity and/or Duration [s].

Note that too much tapping may compact the powder.

8.1.3 Configuring liquid module

Note
Do not select one of these functions unless a METTLER TOLEDO service engineer has mounted the hardware. Otherwise the system may work inaccurately.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open air bleed valve</td>
<td>Standby Keeps the pressure until the terminal switches into stand by mode. After dosing Releases the pressure after each dosing.</td>
<td>Standby*</td>
</tr>
</tbody>
</table>

* Factory setting

Note
Do not select one of these functions unless a METTLER TOLEDO service engineer has mounted the hardware. Otherwise the system may work inaccurately.
Max. solvent mass | Defines the size of the sample container (max. 110 g). This value is the basis to calculate that the solution concentration is possible and will not flood the sample container. | 0.5 g ... 110 g (100 g*)

* Factory setting

8.1.4 Defining data output

Navigation: [Home] > [Dosing] > [Data output] > [Define]

The balance can communicate with various peripheral devices. With the option Data output it can be defined which data will be sent to the peripheral device. Furthermore, the format of the output data can be modified whether the peripheral device is a label printer, common printer or data system.

Note

Data in XML format that are sent to a host computer can not be modified.

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample label</td>
<td>To specify the sample data to be printed on the labels.</td>
<td>See [Specifying the contents of sample or dosing head labels 112]</td>
</tr>
<tr>
<td>Sample protocol</td>
<td>To specify the sample data sent to a strip printer.</td>
<td>See [Specifying the contents of sample or dosing head protocols 115]</td>
</tr>
<tr>
<td>Sample data output</td>
<td>To select the output of sample data to a particular device.</td>
<td>See [Defining the target devices for sample or dosing head data 117]</td>
</tr>
<tr>
<td>Sample data output mode</td>
<td>To specify if data will be sent automatically or manually after dosing is complete.</td>
<td>See [Defining the output mode for sample or dosing head data 117]</td>
</tr>
<tr>
<td>Head label</td>
<td>To specify the content of the label printed on the label printer. The dosing head label can be affixed to the dosing head.</td>
<td>See [Specifying the contents of sample or dosing head labels 112]</td>
</tr>
<tr>
<td>Head protocol</td>
<td>Specifies the dosing head data sent to a strip printer.</td>
<td>See [Specifying the contents of sample or dosing head protocols 115]</td>
</tr>
<tr>
<td>Head data output</td>
<td>To select the output of dosing head data to a particular device, e.g. you can decide whether or not you want to print a label.</td>
<td>See [Defining the target devices for sample or dosing head data 117]</td>
</tr>
<tr>
<td>Head data output mode</td>
<td>To specify whether dosing head data is sent automatically or manually.</td>
<td>See [Defining the output mode for sample or dosing head data 117]</td>
</tr>
<tr>
<td>Info head</td>
<td>To specify the data displayed by touching [Info head].</td>
<td>See [Specifying the info of the dosing head 118]</td>
</tr>
</tbody>
</table>

8.1.4.1 Specifying the contents of sample or dosing head labels

Navigation: [Home] > [Dosing] > [Data output] > [Define] > Sample label > [Define]

If there is a label printer connected to the balance, dosing results can be printed on labels. The labels consists of a plain text section and a code section with a matrix code or a bar code. Text and code can be defined by the user.
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text (solid dosing) I Text (liquid dosing) I Text (solution)</td>
<td>To specify the text on the label. With code: max. of 5 lines. Without code: max. of 8 lines. For a detailed description of the values, see [Values for text and matrix code 113]. Note The parameters described are a maximum of all parameters possible. Not all parameters appear in each submenu. The factory settings depend on the selected submenu.</td>
<td>Substance</td>
</tr>
<tr>
<td>Matrix code (solid dosing) I Matrix code (liquid dosing) I Matrix code (solution)</td>
<td>Defines the matrix code. Note If no item is selected the code will not be printed. For a detailed description of the values, see [Values for text and matrix code 113]. Note The parameters described are a maximum of all parameters possible. Not all parameters appear in each submenu. The factory settings depend on the selected submenu.</td>
<td>Label layout</td>
</tr>
</tbody>
</table>

* Factory setting

Values for text and matrix code

Navigation: [Doc] > [Dosing] > [Data output] > [Define] > Sample label > [Define]

Note
The parameters described are a maximum of all parameters possible. Not all parameters appear in each submenu.

Maximum 6 Data can be displayed on the sample data label.

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance</td>
<td>Prints the identification of the substance (retrieved from the dosing head).</td>
</tr>
<tr>
<td>Solvent name</td>
<td>Prints the identification of the solvent (retrieved from the dosing head).</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Prints the Sample ID entered (either in the dosing steps or through the function key [Sample ID]).</td>
</tr>
<tr>
<td>Lot ID</td>
<td>Prints the "Lot ID" from the current dosing head.</td>
</tr>
<tr>
<td>Content [mg]</td>
<td>Initial weight of the powder in the current dosing head.</td>
</tr>
<tr>
<td>Tolerance</td>
<td>Specifies the accuracy specified for the current dosing (only powder dosing).</td>
</tr>
<tr>
<td>User ID</td>
<td>Prints the User ID entered (either in the Dosing steps or through the function key [User ID]).</td>
</tr>
<tr>
<td>Dispense date</td>
<td>Date of the current dosing</td>
</tr>
<tr>
<td>Dispense time</td>
<td>Time of the current dosing</td>
</tr>
<tr>
<td>Act. conc.</td>
<td>Prints value of actual concentration.</td>
</tr>
<tr>
<td>Act. solution</td>
<td>Prints value of actual solution.</td>
</tr>
<tr>
<td>Act. substance</td>
<td>Prints value of actual substance.</td>
</tr>
<tr>
<td>Act. solvent</td>
<td>Prints value of actual solvent.</td>
</tr>
<tr>
<td>Vol. conc.</td>
<td>Prints value of volumetric concentration.</td>
</tr>
<tr>
<td>Conc. target</td>
<td>Prints value of target concentration.</td>
</tr>
<tr>
<td>m Solution targ.</td>
<td>Prints value of target mass of solution.</td>
</tr>
<tr>
<td>m Solid target</td>
<td>Prints value of target mass of solid.</td>
</tr>
<tr>
<td>m Liquid target</td>
<td>Prints value of target mass of liquid.</td>
</tr>
<tr>
<td>Exp. date</td>
<td>Expiry date of the substance in the current dosing head.</td>
</tr>
<tr>
<td>Retest date</td>
<td>Retest date defined in the settings of the dosing head.</td>
</tr>
<tr>
<td>Balance ID</td>
<td>Identification of the balance defined in [System] > [Info].</td>
</tr>
<tr>
<td>Variable 1 … Variable 4</td>
<td>Prints the title and contents of the four customizable fields defined in the settings of the dosing head. Note Variable 1 … Variable 4 are just the default placeholders. They will be replaced with the field titles defined in the settings of the dosing head.</td>
</tr>
<tr>
<td>Title 1, Title 2</td>
<td>Prints the titles defined in the menu.</td>
</tr>
<tr>
<td>Validity</td>
<td>Indicates whether the result is VALID (within the tolerance) or INVALID (out of tolerance).</td>
</tr>
<tr>
<td>MinWeigh</td>
<td>Indicates whether the "MinWeigh" criteria have been met (VALID or INVALID). If the MinWeigh function is not selected [Off] will be printed instead.</td>
</tr>
<tr>
<td>mSolvent Target</td>
<td>Prints value of target mass of solvent.</td>
</tr>
<tr>
<td>mSolvent meas</td>
<td>Prints measured value of mass of solvent.</td>
</tr>
<tr>
<td>Density param.</td>
<td>Prints the density of the liquid.</td>
</tr>
<tr>
<td>Liquid vol.</td>
<td>Prints the value of the liquid volume.</td>
</tr>
<tr>
<td>Dose duration</td>
<td>Prints the duration of the dosing cycle in seconds.</td>
</tr>
<tr>
<td>Target quantity</td>
<td>Prints the target quantity of the dosing.</td>
</tr>
<tr>
<td>Label index</td>
<td>Counts the number of labels printed for a particular sample. Note This information may be of interest for quality assurance and traceability.</td>
</tr>
<tr>
<td>Sample position</td>
<td>For Auto Sampler only: Prints the location of the sample in the Auto Sampler (1 – 30).</td>
</tr>
<tr>
<td>Head type</td>
<td>Type of dosing head used for the current dosing.</td>
</tr>
<tr>
<td>Head ID</td>
<td>Serial number of the dosing head used for the current dosing.</td>
</tr>
</tbody>
</table>

Defining the label layout

Navigation: **[App] > [Dosing] > [Data output] > [Define] > Sample label > [Define] > Label layout**
The following 10 preset layout schemes are available:

<table>
<thead>
<tr>
<th>No.</th>
<th>Specimen</th>
<th>Number of text rows</th>
<th>Font size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td>large</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>small</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5</td>
<td>large</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>8</td>
<td>small</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>10</td>
<td>small</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5</td>
<td>small</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8</td>
<td>large and small</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>3</td>
<td>small</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>3</td>
<td>large</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>6</td>
<td>small</td>
</tr>
</tbody>
</table>

Note
The layout schemes respect the selected label text items and their printing order. If too many text items have been selected, the label may run out of space (especially with matrix code or bar code). In this case, the label will just contain the text items that fit into the available space. You may now rearrange the printing order of the text items in a way that the most important items are printed first (printing always starts with item 1). Alternatively select another layout scheme that accommodates more text items, i.e. one with a smaller font size or one without a code. The above restrictions apply to text items only, the codes (matrix code or bar code) will always be complete.

8.1.4.2 Specifying the contents of sample or dosing head protocols

Navigation: > [Dosing] > > [Define] > [Sample protocol] > [Define]

If you have a strip printer connected to your balance you may record the dosing results and other related information on paper.

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>Define the information to be reported for each single result.</td>
<td>See [Defining header and footer ▶ 115]</td>
</tr>
<tr>
<td>Single Value</td>
<td>Define the information to be reported for each single result.</td>
<td>See [Defining single value ▶ 116]</td>
</tr>
<tr>
<td>Single value (liquid dosing)</td>
<td>Define the information to be reported for each single result.</td>
<td>See [Defining single value ▶ 116]</td>
</tr>
<tr>
<td>Single value (solution)</td>
<td>Define the information to be reported for each single result.</td>
<td>See [Defining single value ▶ 116]</td>
</tr>
<tr>
<td>Footer</td>
<td>Define information to be printed in the protocol footer after the results (single values).</td>
<td>See [Defining header and footer ▶ 115]</td>
</tr>
</tbody>
</table>

Defining header and footer

Navigation: > [Dosing] > > [Define] > [Sample protocol] > [Define]

Note
The parameters described are a maximum of all parameters possible. Not all parameters appear in each submenu.

The factory settings depend on the selected submenu.

You can define the following parameters:
<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appl. Name</td>
<td>Prints the application name.</td>
</tr>
<tr>
<td>Title 1, Title 2</td>
<td>Prints the titles defined in the menu.</td>
</tr>
<tr>
<td>Date/Time</td>
<td>Prints date and time.</td>
</tr>
<tr>
<td>User ID</td>
<td>Prints the User ID entered in the dosing steps or with function key [User ID]).</td>
</tr>
<tr>
<td>Balance Type</td>
<td>Balance type identification.</td>
</tr>
<tr>
<td>SNR</td>
<td>Serial number of terminal and dosing units.</td>
</tr>
<tr>
<td>Balance ID</td>
<td>Identification of the balance, defined in Info.</td>
</tr>
<tr>
<td>Levelcontrol</td>
<td>Indicates if the balance is correctly leveled.</td>
</tr>
<tr>
<td>Variable 1 … Variable 4</td>
<td>Prints the title and contents of the four customizable fields defined in the settings of the dosing head.</td>
</tr>
</tbody>
</table>

Note

Variable 1 … Variable 4 are just the default placeholders. They will be replaced with the field titles defined in the settings of the dosing head.

Last cal.	Prints the date of the last calibration.
Signature	Prints a line for signature.
Blank Line	Prints a blank line.
Dash Line	Prints a dashed line. Two dash lines can be set.
3 Blank Lines	Prints 3 blank lines at the end of the printout.

Defining single value

Navigation:

[Dosing] > [Data output] > [Define] > [Sample protocol] > [Define] > Single Value > [Define]

In this submenu the information printed for each individual dosing can be defined.

Note

The parameters described are a maximum of all parameters possible. Not all parameters appear in each submenu.

The factory settings depend on the selected submenu.

You can define the following parameters:
8.1.4.3 Defining the target devices for sample or dosing head data

Navigation: \[Dosing\] \[Data output\] \[Define\] \[Sample data output\] \[Define\]

In this section the output of sample data to a particular device can be selected.

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol*</td>
<td>Sends sample data to the strip printer.</td>
</tr>
<tr>
<td>Label*</td>
<td>Sends sample data to the label printer.</td>
</tr>
<tr>
<td>Host (XML)*</td>
<td>Sends sample data to a remote host computer.</td>
</tr>
</tbody>
</table>

* Factory setting

Note
The balance always transmits the full XML data set to the host computer. The amount of data sent in XML format cannot be defined.

8.1.4.4 Defining the output mode for sample or dosing head data

Navigation: \[Dosing\] \[Data output\] \[Define\] \[Sample data output\] \[Define\] \[Sample data output mode\]

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>No automatic transfer of data. To transfer the dosing result to the selected devices, press [Enter].</td>
</tr>
<tr>
<td>Note</td>
<td>Option not available with a mounted and programmed autosampler.</td>
</tr>
<tr>
<td>Automatic*</td>
<td>Transfers the dosing result automatically to the selected devices after a dosing cycle has been completed.</td>
</tr>
</tbody>
</table>
Ext. ctrl | Transfers the dosing result automatically to the selected devices after a dosing cycle has been completed. You need to confirm the transfer either by tapping [OK] or by sending a command from the target device to the balance.

Strict ext. ctrl | Transfers the dosing result automatically to the selected devices after a dosing cycle has been completed. You need to confirm the transfer either by sending a command from the target device to the balance.

8.1.4.5 Specifying the info of the dosing head

Navigation: [Home] > [Dosing] > [Data output] > [Define] > Info head > [Define]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info head</td>
<td>In this submenu the data displayed when touching the function key [Info head] can be defined. For a detailed description of the values, see [Values for text and matrix code] 113.</td>
<td>Substance*</td>
</tr>
<tr>
<td>Head prod. date</td>
<td>displays production date of the dosing head.</td>
<td></td>
</tr>
<tr>
<td>Rem. quantity</td>
<td>displays remaining quantity.</td>
<td></td>
</tr>
<tr>
<td>Rem. dosages</td>
<td>displays remaining number of doses.</td>
<td></td>
</tr>
</tbody>
</table>

8.1.5 Defining dosing head definition data

Navigation: [Home] > [Dosing] > [Head def. data] > [Define]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head def. data</td>
<td>In this submenu the dosing head information displayed on the screen when touching the function key [Write head] can be defined. For a detailed description of the values, see [Values for text and matrix code] 113.</td>
<td>Substance*</td>
</tr>
<tr>
<td>Dose limit</td>
<td>change dose limit only at the first time you set up a new dosing head. A change during the lifetime of a dosing head, may lead to an error that you can’t use your dosing head anymore. Enter value between 1 and 999.</td>
<td></td>
</tr>
</tbody>
</table>

8.1.6 General settings

Navigation: [Home] > [Dosing] > [General settings] > [Define]

Several specific settings are available for dosing. You can use them to adapt the application to your needs. Most of the setting options are the same as for the Weighing application. Only the settings that differ are described below.

The arrow buttons can be used to page forward or back to a menu page.

- Application is activated.
- Press [Home].
 ➜ A window with application-dependent settings appears.
2 Tap **General settings > [Define]**.
3 Select the required menu item.
4 Change the settings and confirm with **[OK]**.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function Keys</td>
<td>Defines the function keys to be displayed.</td>
<td>See [Specific function keys for dosing 119]</td>
</tr>
<tr>
<td></td>
<td>These keys enable direct access to specific functions.</td>
<td></td>
</tr>
<tr>
<td>Side doors</td>
<td>Defines the behaviour of the side doors.</td>
<td>See [Side doors 120]</td>
</tr>
<tr>
<td>Smart & ErgoSens</td>
<td>Programs both SmartSens sensors of the terminal.</td>
<td>See [Settings for SmartSens and ErgoSens 120]</td>
</tr>
<tr>
<td></td>
<td>Up to two external ErgoSens (optional) can be assigned a function in this menu.</td>
<td></td>
</tr>
<tr>
<td>Info Field</td>
<td>Defines the information fields to be displayed.</td>
<td>See [Specific info fields for dosing 122]</td>
</tr>
</tbody>
</table>

See also

- Specific info fields for dosing [122]

8.1.6.1 Specific function keys for dosing

Navigation: [App] > [Dosing] > [] > [General settings] > Function Keys > [Define]

This menu item can be used to activate the following specific function keys for dosing.

All other function keys are the same as for the **Weighing** application.

The function keys are displayed in the application at the bottom of the display. The numbers define the sequence in the display.

- Activate or deactivate function keys by tapping.
- To redefine the sequence, all function keys must be deactivated and subsequently activated in the required sequence.
- Application is activated.

1 Press [].
 - A window with application-dependent settings appears.
2 Tap **Function Keys > [Define]**.
3 Select the **Function Keys** which you need.
 - The function key is automatically numbered.
4 Change the settings and confirm with **[OK]**.

The arrow buttons can be used to page forward or back to a menu page.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>Start Starts a dosing / weighing cycle.</td>
</tr>
<tr>
<td>[]</td>
<td>Quantity To define the target quantity.</td>
</tr>
<tr>
<td>[]</td>
<td>Tolerance To define the tolerance.</td>
</tr>
<tr>
<td>[]</td>
<td>User ID To define the user ID.</td>
</tr>
<tr>
<td>[]</td>
<td>Sample ID To define the sample ID.</td>
</tr>
<tr>
<td>[]</td>
<td>Un/Lock Locks or unlocks the dosing head to remove it.</td>
</tr>
</tbody>
</table>
Copy head
Copies data from one dosing head to another dosing head.

Info head
Displays the data of the current dosing head.

Write head
To enter new data or to edit data of a dosing head (if you have a printer, this data will be printed automatically).

Samples
Defines the number of samples to be dosed.
Note
If the appropriate information field is selected, the number of the remaining samples will be shown.

Set content
Stores the net weight of the powder that has been filled into the powder container.
Note
The net weight can be used to write the dosing head.

Home
To move the auto sampler back to the home position (initializing).

Right
To move the auto sampler rack counterclockwise.

Left
To move the auto sampler rack clockwise.

Tapper
Activates the built-in tapper.

Setup
For autosampler and SafePos only: To select and adjust the autosampler directly and to activate the **SafePos** option.

SafePos
For adjusting **SafePos**: To move the dosing head from the dosing position to the safe position. To check that the position is correct.

Purge
For liquid module only: Purges the liquid dosing head for a defined time in [sec].

8.1.6.2 Configuring the side doors

Navigation:
[Dosing] > [Define] > General settings > [Define] > Side doors > [Define]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
</table>
| Side doors | In this submenu the behaviour of the side doors can be defined. The door movement can be linked to a particular procedure or action.
Dosing = door movement is linked to the dosing procedure.
Un/Lock = door movement is linked to the function key [Un/Lock].
Int. Adj, int. Tst = door movement is linked to any internal adjustment or test. | **Dosing** | **Un/Lock** | **Int. Adj, int. Tst** |

8.1.6.3 Settings for SmartSens and ErgoSens

Navigation:
[Dosing] > [Smart & ErgoSens]

This menu can be used to activate or deactivate both hands-free sensors (SmartSens) in the left and right top corner of the terminal.

A specific function can be activated by moving the hand over the respective sensor (maximum distance about 5 cm). The sensor beeps to confirm that it has recognized the command.
External sensors connected to the connections "Aux 1" and "Aux 2" at the rear of the balance can be configured with the ErgoSens settings. ErgoSens is an optionally available external sensor. A maximum of 2 external ErgoSens can be connected to the balance.

Each of the two SmartSens and ErgoSens can be assigned one of the following functions by tapping the associated button.

Note
If one of the functions that emulate a button at the terminal is activated, the respective symbol (\(\text{\(\Rightarrow\)}\), \(-\text{\(\Rightarrow\)}\), \(-\text{\(\Rightarrow\)}\)) in the status bar below the respective sensor lights up. For all other settings that emulate function keys with the same name, the green **F** (Function) symbol lights up. No symbol lights up when the sensor is deactivated.

1. Press **F**.
 - A window with application-dependent settings appears.
2. Tap **Smart & ErgoSens** > [Define].
 - A selection window appears.
3. Select the required menu item, e.g. **SmartSens left**.
 - A selection window appears.
4. Select the function and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartSens left</td>
<td>Activates/deactivates the left SmartSens.</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>(\text{(\Rightarrow)}) = opens/closes the glass draft shield (doors).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{(\Rightarrow)}) = opens the input window for numerical entry of a fixed tare weight (subtraction of tare weight).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{(\Rightarrow)}) = transfers the stable, formatted weight via the interface.</td>
<td></td>
</tr>
<tr>
<td>SmartSens right</td>
<td>Activates/deactivates the right SmartSens.</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>(\text{(\Rightarrow)}) = opens/closes the glass draft shield (doors).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{(\Rightarrow)}) = opens the input window for numerical entry of a fixed tare weight (subtraction of tare weight).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{(\Rightarrow)}) = transfers the stable, formatted weight via the interface.</td>
<td></td>
</tr>
<tr>
<td>ErgoSens 1 (Aux1)</td>
<td>Activates/deactivates the ErgoSens 1.</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>(\text{(\Rightarrow)}) = opens/closes the glass draft shield (doors).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{(\Rightarrow)}) = opens the input window for numerical entry of a fixed tare weight (subtraction of tare weight).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{(\Rightarrow)}) = transfers the stable, formatted weight via the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AntiStatic Kit = to activate the ionizer, it must be selected appropriate to the connection used.</td>
<td></td>
</tr>
<tr>
<td>ErgoSens 2 (Aux2)</td>
<td>Activates/deactivates the ErgoSens 2.</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>(\text{(\Rightarrow)}) = opens/closes the glass draft shield (doors).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{(\Rightarrow)}) = opens the input window for numerical entry of a fixed tare weight (subtraction of tare weight).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{(\Rightarrow)}) = transfers the stable, formatted weight via the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AntiStatic Kit = to activate the ionizer, it must be selected appropriate to the connection used.</td>
<td></td>
</tr>
</tbody>
</table>
8.1.6.4 Specific info fields for dosing

Navigation: [Home] > [Dosing] > [General settings] > Info Field > [Define]

The information fields of the display provide information about the sample, the target quantity etc. The information fields are displayed in the application home screen. The numbers 1-4 determine the order of the information fields on the display.

- Information fields can be activated or deactivated by tapping.
- To redefine the sequence, all information fields must be deactivated and then activated in the required sequence.

Application is activated.

1. Press [Home].
 - A window with application-dependent settings appears.
2. Tap Info Field > [Define].
3. Select the information fields that you need.
 - The information field is automatically numbered.
4. Change the settings and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable 1</td>
<td>Shows the content of the 4 customizable fields when setting up a dosing head.</td>
</tr>
<tr>
<td>Variable 2</td>
<td></td>
</tr>
<tr>
<td>Variable 3</td>
<td></td>
</tr>
<tr>
<td>Variable 4</td>
<td></td>
</tr>
</tbody>
</table>

Note

Variable 1 to Variable 4 are default placeholders that will be replaced by the titles defined when the dosing head was set up.

Target quantity*	Displays the target quantity that was defined via Dosing steps or via the function key [Quantity].
Tolerance	Displays the dosing tolerance entered via Dosing steps or via the function key [Tolerance].
User ID	Displays the user ID entered via Dosing steps or via the function key [User ID].
Sample ID	Displays the sample ID entered via Dosing steps or via the function key [Sample ID].
Substance*	Displays the identification of the substance (retrieved from the dosing head).
Samples*	Displays the total number of samples to be dosed entered via the function key [Samples].
Rem. samples*	Counts and displays the number of samples remaining to be dosed, when the total number of samples has been entered via the function key [Samples].
Rem. dosages	Displays the number of dosing cycles left before the dosing head needs to be replaced.

* Factory settings
9 Pipette Check Application

Navigation: [PubMed] > [Pipette Check]

This application requires the use of the optional accessory EasyScan.

Note
RAININ pipette with embedded RFID chip can automatically use the application.
All application settings are saved under the active user profile.

Terms
Since pipette checks are subject to inaccuracy, **Sys. error E** and **Random Error s** can occur time and again.
Sys. error E is a deviation between the nominal and mean value of measured test values.
Random Error s is a measure for the variation of determined volume values, i.e. denotes the relative standard deviation.
Random errors can be small if measured values are close together, however **systematic errors** can be large if the calculated mean value is far from the nominal value. This can also be the reverse. Ideally both measurement errors should be as small as possible.

Options
The pipette check application offers various options:

Pipette check
When a configured pipette is held in front of EasyScan, the application checks the calibration and Quick-Check dates and displays the result.

Quick-Check
Quality management systems conforming to standards such as ISO 9000, GLP or GMP require regular testing of volumetric measuring devices. Quick-Check checks the accuracy of pipettes.
Quick-Check allows the accuracy of pipettes of any manufacturer with a Mettler-Toledo RFID tag to be checked.

Training
With this option, pipetting can be practiced or a system test performed. Before attempting to pipette with sensitive or expensive liquids, it may be necessary to check whether the required accuracy with a specific pipette can be achieved on a specific balance. How to perform a system test. The training option can also be used for performing such "system tests".
Training can be performed with pipettes of any manufacturer. An RFID tag is not required as it is not supported by the balance using the training option.

Pipette configuration
Before using the RFID tag for the first time, the configuration data must be entered. It may also be necessary to adapt data to an already configured pipette (if, e.g. the pipette was calibrated, but the provider had not entered the next calibration date).

Other functions
The pipette check application offers no pipette calibration functions. If calibration is required after checking, contact the pipette manufacturer.
For the **Quick-Check** and **Training** options, we recommend the use of a precision thermometer, barometer, hygrometer and evaporation trap.

Selecting the application
1 Press [PubMed].
2 Tap the [Pipette Check] icon in the selection window.

⇒ The selected application is active.

⇒ Some of the specific function keys and protocol information for the pipette check are activated by default (factory defaults).

⇒ The balance is ready for the pipette check.

9.1 Pipette check application settings

Navigation: [] > [Pipette Check] > []

Different specific pipette check settings are available, which can be used to adapt the application to suit specific requirements.

Most of the settings are the same as the Weighing application. Only the pipette check specific settings are described below.

The arrow buttons can be used to page forward or back to a menu page.

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuickCheck Options</td>
<td>Defines the behavior of Quick-Check.</td>
<td>See [Specific Quick-Check option settings 124]</td>
</tr>
<tr>
<td>Training Options</td>
<td>Defines the training behavior.</td>
<td>See [Specific training option settings 124]</td>
</tr>
<tr>
<td>RFID Recognition</td>
<td>Defines the behavior of the RFID recognition beep.</td>
<td>See [Specific RFID recognition beep settings 125]</td>
</tr>
<tr>
<td>Function Keys</td>
<td>Defines the function keys for the pipette check to appear at the bottom of the display. These keys enable direct access to specific functions.</td>
<td>See [Specific pipette check application function keys 125]</td>
</tr>
<tr>
<td>QuickCheck Protocol</td>
<td>Selects information to be shown in the Quick-Check protocols.</td>
<td>See [Specific Quick-Check protocol information 126]</td>
</tr>
<tr>
<td>Training Protocol</td>
<td>Selects information to be shown in the training protocols.</td>
<td>See [Specific training protocol information 127]</td>
</tr>
</tbody>
</table>

9.1.1 Specific Quick-Check option settings

Navigation: [] > [Pipette Check] > [] > Pipette Check Options > [Define]

This menu can be used to define the behavior of Quick-Check.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilization time</td>
<td>Defines the stabilization time in seconds (numerical entry).</td>
<td>3 … 100 (5)*</td>
</tr>
<tr>
<td>Measurement end beep</td>
<td>Activates/deactivates the beep at the end of measurement.</td>
<td>Off</td>
</tr>
<tr>
<td>Auto start next sample</td>
<td>Activates/deactivates automatic start of pipetting detection. Off: To start pipetting the next sample, confirm the result with [OK].</td>
<td>Off</td>
</tr>
</tbody>
</table>

* Factory setting

9.1.2 Specific training option settings

Navigation: [] > [Pipette Check] > [] > Training Protocol

You can define the following parameters:
Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilization time</td>
<td>Defines the stabilization time in seconds (numerical entry).</td>
<td>3 … 100 (5)*</td>
</tr>
<tr>
<td>No. of measurements</td>
<td>Defines the number of measurements for training (numerical entry).</td>
<td>1 … 100 (5)*</td>
</tr>
<tr>
<td>Training liquid</td>
<td>Defines the liquid used for training.</td>
<td>Water*</td>
</tr>
<tr>
<td>Measurement end beep</td>
<td>Activates/deactivates the beep at the end of measurement.</td>
<td>Off</td>
</tr>
<tr>
<td>Auto start next sample</td>
<td>Activates/deactivates automatic start of pipetting detection.</td>
<td>Off</td>
</tr>
</tbody>
</table>

* Factory setting

9.1.3 Specific RFID recognition beep settings

Navigation: [Settings] > [Pipette Check] > [RFID recognition beep]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFID Recognition Beep</td>
<td>Activates/deactivates the RFID recognition beep.</td>
<td>Off</td>
</tr>
</tbody>
</table>

* Factory setting

9.1.4 Specific pipette check application function keys

Navigation: [Settings] > [Pipette Check] > [Function Keys]

Function keys enable direct access to specific functions and settings in the application. A function can be activated by tapping a key.

The function keys are displayed in the application at the bottom of the display. The numbers define the sequence in the display.

- Activate or deactivate function keys by tapping.
- To redefine the sequence, all function keys must be deactivated and subsequently activated in the required sequence.

The arrow buttons can be used to page forward or back to a menu page.

- Application is activated.
 1. Press [Function Keys].
 - A window with application-dependent settings appears.
 2. Tap Function Keys > [Define].
 3. Select the Function Keys which you need.
 - The function key is automatically numbered.
 4. Change the settings and confirm with [OK].

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Starts training.</td>
</tr>
<tr>
<td>Setup</td>
<td>Starts setup.</td>
</tr>
<tr>
<td>HowTo</td>
<td>Display pipetting instructions.</td>
</tr>
</tbody>
</table>
9.1.5 Specific Quick-Check protocol information

Navigation: [Home] > [Pipette Check] > [QuickCheck Protocol] > [Define]

Here you define which data appears in the protocols. This large menu item is divided into three sub-menus. They enable you to make additional settings for the application. The rest of the available protocol data corresponds to the data for the Weighing application and is not described here.

The numbered data items are printed in the protocols. The numbers determine the sequence in the printout.

- Information can be activated or deactivated by tapping. The sequence of the keys is automatically updated.
- To redefine the sequence, all information must be deactivated and subsequently activated in the required sequence.

Application is activated.

1 Press [Define].
 ⇒ A window with application-dependent settings appears.

2 Tap Protocol > [Define].
 ⇒ Protocol window appears.

3 Tap (e.g. Header) > [Define].
4 Select the information key which you need.
 ⇒ The information key is automatically numbered.

5 Confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

- To print out the settings, press [Print].

Header line of protocols

Use this sub-menu to define which data is printed in the protocol header (before the results).

Recording of single values

This submenu can be used to define the information to be reported for each individual result.

Protocol footer

This submenu can be used to define the information to be printed in the protocol footer after the results (single values).

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>Define the information to be printed in the protocol header (before the results).</td>
<td>Appl. Name*</td>
</tr>
<tr>
<td>Pipette model</td>
<td>records the pipette type.</td>
<td></td>
</tr>
<tr>
<td>Pipette SNR</td>
<td>records the pipette serial number.</td>
<td></td>
</tr>
<tr>
<td>Nominal vol.</td>
<td>records the nominal volume of the pipette.</td>
<td></td>
</tr>
<tr>
<td>No. of measurements</td>
<td>records the number of measurements.</td>
<td></td>
</tr>
<tr>
<td>Env. data</td>
<td>records the air pressure, air temperature, water temperature and humidity.</td>
<td></td>
</tr>
<tr>
<td>Conv. factor Z</td>
<td>records the conversion factor Z.</td>
<td></td>
</tr>
<tr>
<td>Env. data</td>
<td>records whether Quick-Check was passed or failed.</td>
<td></td>
</tr>
</tbody>
</table>
Single value

- **Check vol.** = records the check volume.
- **Limit** = records the maximum permissible check volume system error and random error (tolerance limits).
- **Meas. details** = records details of the measurement (number and calculated volume of each sample).
- **Statistics** = records:
 - average sample volume
 - check volume systematic error [µl] und [%]
 - check volume random error [µl] und [%]
 - calculated measurement uncertainty
- **Result** = records the volume result (passed/failed).

Check vol.* | Limit | Meas. details | Statistics | Result

Footer

- Define information to be printed in the protocol footer after the results (single values).
- **Overall result** = records whether Quick-Check was passed or failed.

Footer line

- Define information to be printed in the protocol footer after the results (single values).
- **Overall result** = records whether Quick-Check was passed or failed.

9.1.6 Specific training protocol information

Navigation: [][] > [Pipette Check] > [] > Training Protocol > [Define]

Here you define which data appears in the protocols. This large menu item is divided into three sub-menus. They enable you to make additional settings for the application. The rest of the available protocol data corresponds to the data for the **Weighing** application and is not described here.

The numbered data items are printed in the protocols. The numbers determine the sequence in the printout.

- Information can be activated or deactivated by tapping. The sequence of the keys is automatically updated.
- To redefine the sequence, all information must be deactivated and subsequently activated in the required sequence.
- Application is activated.

1. Press [].
 - A window with application-dependent settings appears.
2. Tap Protocol > [Define].
 - Protocol window appears.
3. Tap (e.g. **Header**) > [Define].
4. Select the information key which you need.
 - The information key is automatically numbered.
5. Confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [].

Header line of protocols

Use this sub-menu to define which data is printed in the protocol header (before the results).
Recording of single values
This submenu can be used to define the information to be reported for each individual result.

Protocol footer
This submenu can be used to define the information to be printed in the protocol footer after the results (single values).

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>Define the information to be printed in the protocol header (before the results).</td>
<td>Appl. Name*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Title 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SNR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Levelcontrol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid name*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conv. factor Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overall result</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blank Line</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Blank Lines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Single value</th>
<th>Define the information to be recorded for each single result.</th>
<th>Test vol.*</th>
<th>Meas. details</th>
<th>Statistics*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test vol.</td>
<td>= records the test volume.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meas. details</td>
<td>= records details of the measurement (number and calculated volume of each sample).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td>= records:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Footer</td>
<td>Define information to be printed in the protocol footer after the results (single values).</td>
<td>Appl. Name</td>
<td>Title 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Title 2</td>
<td>Date/Time*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>User</td>
<td>Balance Type</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SNR</td>
<td>Balance ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Levelcontrol</td>
<td>ID1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID2</td>
<td>ID3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID4</td>
<td>No. of measurements*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signature*</td>
<td>Blank Line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blank Line</td>
<td>Dash Line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Blank Lines*</td>
<td>3 Blank Lines</td>
<td></td>
</tr>
</tbody>
</table>

* Factory setting

9.2 Working with the pipette check application

Navigation: [Main Menu] > [Pipette Check]

This section describes working with the Pipette Check application. It is assumed that the Pipette Check application is selected and the application-specific settings have been made. If an evaporation trap is available, it should be installed. A precision thermometer, barometer and a hygrometer, if required, should be available.

Important
Test liquid, sample container, pipette and pipette tip should be acclimatized.

- A printer is connected and activated as an output device in the peripheral device settings.
 - To print out the settings, press [Print].

This application requires the use of the optional accessory EasyScan.
9.2.1 Pipette check

Navigation:
[RF] > [Pipette Check]

This section describes the procedure for checking pipettes with RFID tag.
- SmartScan is connected and configured.
- The pipette has an RFID tag.

1. Hold the pipette in front of EasyScan.
 - EasyScan scans the data on the RFID tag and checks the calibration and Quick-Check dates.
 - A message appears requesting whether any actions are required.

2. If no actions are required, confirm with [OK].
 - The check is complete.

9.2.2 Carrying out a Quick-Check

Navigation:
[RF] > [Pipette Check]

Shown below is the procedure for carrying out a Quick-Check on pipettes with RFID tag.

Measurement steps
- Pipette as directed by the [HowTo] function key.
- Confirm with [OK].
- The balance performs a stabilization countdown.
- If activated, a beep sounds on completion of the measurement.

Carrying out a Quick-Check
- Application is activated.

1. Hold the pipette in front of EasyScan.
 - EasyScan scans and checks the data on the RFID tag.
 - If the calibration date is due, this appears.
 - If the date for the Quick-Check is due, start the Quick-Check.

2. Press [Check].
 - The balance starts the Quick-Check.
 - A window with ambient data appears.

3. Change the data if necessary and confirm with [OK]. (Once changed, the data is retained for subsequent Quick-Checks).

4. Place the water container on the weighing pan and confirm with [OK].
 - The balance displays the Quick-Check window.

5. Carry out the measurements for the first volume.
 - If a measurement is carried out incorrectly, the last measurement can be cancelled or repeated 3 times per volume.
 - When **Auto start next sample** is active, start the next measurement directly with pipetting.
 - If **Auto start next sample** is not active, press [OK].
 - When the measurements for a volume are complete, the balance displays an appropriate message.

6. Tap [Continue] to continue with the next volume.
 - The balance displays the result of the completed volume.
 - The balance requests that the pipette is adjusted to the new volume and the next cycle started.
 Starting the cycle sets the balance to 0.
 - Carry out the measurements as described.

7. When the measurements for the last volume are complete, the balance displays the overall statistics.

8. The test result can be printed by pressing [Print].
9 If the Quick-Check is **PASSED**, hold the pipette in front of EasyScan.
 ⇒ The date of the next Quick-Check is written to the RFID tag.
 ⇒ Quick-Check is complete.

Note
Only the date of the next Quick-Check is written to the RFID tag. No Quick-Check results are recorded. The test results can be printed out at the end of the test.

9.2.3 Training

Navigation: [Main Menu] > [Pipette Check]

This section describes the training procedure. The training option can be used for pipette training or preparing for a complex or critical pipetting task.

Measurement steps
- Pipette as directed by the [HowTo] function key.
- Confirm with [OK].
- The balance performs a stabilization countdown.
- If activated, a beep sounds on completion of the measurement.

Training
- Application is activated.
1. Tap [Training].
 ⇒ A window with test volume appears.
2. Change the data if necessary and confirm with [OK].
 ⇒ A window with ambient data appears.
3. Change the data if necessary and confirm with [OK].
4. Place the liquid container on the weighing pan and confirm with [OK].
 ⇒ A window with instructions appears.
5. Carried out the defined number of measurements.
 - If a measurement is carried out incorrectly, the last measurement can be cancelled or repeated any number of times.
 - If **Auto start next sample** is active, start the next measurement directly with pipetting.
 - If **Auto start next sample** is not active, press [OK].
6. The series of measurements is completed when the defined number is reached **No. of measurements**.
 To actively end the series of measurements, tap [Finish].
 ⇒ The balance displays the final result.
7. The test result can be printed by pressing [Print].
8. Confirm with [OK].
 ⇒ Training is complete.

9.2.4 Pipette configuration

9.2.4.1 Scanning a new pipette with RFID tag

Navigation: [Main Menu] > [Pipette Check]

This section describes the setting options for a new pipette. New RFID tags do not contain any data. Before the RFID tag can be used, the required data must be entered.
- Application is activated.
- The RFID tag of the pipette is empty.
1. Hold the pipette in front of EasyScan.
 ⇒ The balance detects that the RFID tag is empty and opens the data input window.
2. Enter the data.
3 Confirm data entry with [OK].
 ⇒ The balance requests that the RFID pipette is held in front of EasyScan.
4 Hold the pipette in front of EasyScan.
 ⇒ The data is written to the RFID tag.
 ⇒ The balance displays a message to confirm that the data has been successfully written to the tag.
5 Confirm with [OK].

The following data can be edited:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipette SNR</td>
<td>Pipette serial number.</td>
<td>Alphanumeric, max. 15 characters*</td>
</tr>
<tr>
<td>Pipette model</td>
<td>Type of pipette.</td>
<td>Alphanumeric, max. 15 characters*</td>
</tr>
<tr>
<td>Nominal vol.</td>
<td>Nominal pipette volume in microliters [µl].</td>
<td>Value* (0)</td>
</tr>
<tr>
<td>Comment field: Name</td>
<td>Defines the free field name.</td>
<td>Alphanumeric, max. 10 characters*</td>
</tr>
<tr>
<td>Comment field: Content</td>
<td>Defines the free field content.</td>
<td>Alphanumeric, max. 15 characters</td>
</tr>
<tr>
<td>Next calibration</td>
<td>Defines the next calibration date.</td>
<td>Date* (Date plus 1 year)</td>
</tr>
<tr>
<td>Next QuickCheck</td>
<td>Defines the next Quick-Check date.</td>
<td>Date* (Date)</td>
</tr>
<tr>
<td>Pipette type</td>
<td>Selects the pipette type (Single Channel or Multi Channel).</td>
<td>Selection field* (Single channel)</td>
</tr>
<tr>
<td>Evaporation trap</td>
<td>Defines whether an evaporation trap is required.</td>
<td>Selection field* (No)</td>
</tr>
<tr>
<td>No. of measurements</td>
<td>Defines the number of measurements for Quick-Check (valid for all volumes).</td>
<td>Value* (4)</td>
</tr>
<tr>
<td>Check interval</td>
<td>Defines the Quick-Check interval (entry in days)</td>
<td>Value* (90)</td>
</tr>
<tr>
<td>Volume 1</td>
<td>Defines the Quick-Check check volume 1 (percentage of the nominal volume).</td>
<td>Value* (10)</td>
</tr>
<tr>
<td>Volume 2</td>
<td>Defines the Quick-Check check volume 2 (percentage of the nominal volume).</td>
<td>Value* (100)</td>
</tr>
<tr>
<td>Volume 3</td>
<td>Defines the Quick-Check check volume 3 (percentage of the nominal volume).</td>
<td>Value* (0)</td>
</tr>
<tr>
<td>Sys. err. vol. 1 ... Sys. err. vol. 3</td>
<td>Maximum permissible systematic error (tolerance limit) for Quick-Check check volumes 1 ... 3 (percentage of nominal volume).</td>
<td>Value* (0)</td>
</tr>
<tr>
<td>Rand. err. vol. 1 ... Rand. err. vol. 3</td>
<td>Maximum permissible random error (tolerance limit) for Quick-Check check volumes 1 ... 3 (percentage of nominal volume).</td>
<td>Value* (0)</td>
</tr>
</tbody>
</table>

* Required field () application default values

Default values

The data of the last read or written pipette is displayed as default values. If no pipette was read or written since the start of the application, the application above default values are displayed.

These default values allow, e.g. a reference pipette to be used for the configuration of a new pipette.
1 Hold the reference pipette in front of EasyScan.
 ⇒ EasyScan reads the data and stores the default values.
2 Hold the pipette with empty RFID tag in front of EasyScan.
 ⇒ A data input window with the reference pipette default values is opened.

Check volume for Quick-Check
The Quick-Check can be carried out with 1 to 3 check volumes. A check volume of 0% means that this check volume is not used.

9.2.4.2 Editing pipette data

Navigation: [Scan] > [Pipette Check]

This section describes the procedure for editing the data of an RFID written pipette.
- Application is activated.
- The pipette has an RFID tag.
1 Tap [Setup].
 ⇒ The balance requests that the RFID pipette is held in front of EasyScan.
2 Hold the pipette in front of EasyScan.
 ⇒ EasyScan reads the data from the RFID-day and opens the data input window.
3 Change the data in the respective data field.
4 Confirm the changes with [OK].
 ⇒ The balance requests that the RFID pipette is held in front of EasyScan.
5 Hold the pipette in front of EasyScan.
 ⇒ The data is written to the RFID tag.
 ⇒ The balance displays a confirmation message.
6 Confirm with [OK].

The following data can be edited:
See [Scanning a new pipette with RFID tag 130].

9.2.5 Example protocol of a Quick-Check
The feasibility of a protocol depends on the selected protocol settings.
9.3 Calculations for Quick-Check

Formulae

For the calculation of volume, Z-factor and measurement uncertainty, formulae according to ISO 8655-6 and ISO/TR 20461 are used.

Rounding of values

- Values are rounded according to conventional rules (≥ 5 -> rounded).
- Entered values, e.g. water temperature, air pressure, etc., are rounded to one decimal place.
- Conv. factor Z is rounded after calculation to 6 decimal places. This is used for conversion of weight to volume.
- The calculated volume is rounded to the resolution of the balance and shown in the protocol.
 - 6-place balance: Microliters with 3 decimal places
 - 5-place balance: Microliters with 2 decimal places
 - 4-place balance: Microliters with 1 decimal place
10 Titration Application

Navigation: [> [Titration]

The Titration application enables the automation of interaction between the balance and titrator. The optional RFID reader enables data to be read and written to an RFID tag. The RFID tag serves as a data carrier between the balance and titrator. The RFID tag placed on the base of a titrating beaker easily and reliably transfers the sample data, e.g. sample ID and weight.

All application settings are saved under the active user profile.

The Titration application is based on the weighing application. For automated operation with a titrator, the Titration application has several settings and functions. Some settings and functions of the Weighing application do not apply here and have therefore been omitted. Only the settings and functions that differ from those of the Weighing application are described in detail below.

Selecting the application
1 Press [.
2 Tap the [Titration] icon in the selection window.
 ⊳ The selected application is active.
 ⊳ Some of the specific titration function keys and information fields are activated by default (factory defaults).
 ⊳ The balance is ready for weighing.

10.1 Settings for titration application

Navigation: [] > [Titration] > []

Various specific titration settings are available, which can be used to adapt the application to suit specific requirements.

Most of the setting options are the same as for the Weighing application. Only the settings that differ are described below.

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFID Options</td>
<td>Defines the behavior of the application.</td>
<td>See [Specific RFID option settings ▶ 134]</td>
</tr>
<tr>
<td>Identification</td>
<td>Activates/deactivates and names identification fields.</td>
<td>See [Specific identifications for titration ▶ 135]</td>
</tr>
<tr>
<td>Function Keys</td>
<td>Defines the titration function keys to appear at the bottom of the display. These keys enable direct access to specific functions.</td>
<td>See [Specific function keys for titration ▶ 136]</td>
</tr>
<tr>
<td>Protocol</td>
<td>Selects information to be shown in the weighing protocols.</td>
<td>See [Specific protocol information for titration ▶ 137]</td>
</tr>
</tbody>
</table>

10.1.1 Specific RFID option settings

Navigation: [] > [Titration] > [] > RFID Options

This menu item can be used to configure certain behavior patterns of the application.

- Application is activated.
1 Press [.
 ⊳ A window with application-dependent settings appears.
2 Tap **RFID Options > [Define]**.
 ⇒ A selection window appears.
3 Select the required menu item.
4 Tap [On].
5 Confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto start data editing</td>
<td>Activates/deactivates automatic opening of the data editing window on detection of a new beaker. See [Specific identifications for titration (\Rightarrow 135)]</td>
<td>Off (\Rightarrow) On*</td>
</tr>
<tr>
<td>Auto increment ID 1</td>
<td>Activates/deactivates automatic step-by-step incrementation of ID 1. See [Specific identifications for titration (\Rightarrow 135)].</td>
<td>Off* (\Rightarrow) On</td>
</tr>
<tr>
<td>Auto print when writing</td>
<td>Activates/deactivates automatic printing when writing data to the RFID tag.</td>
<td>Off* (\Rightarrow) On</td>
</tr>
<tr>
<td>RFID recognition beep</td>
<td>Activates/deactivates the RFID recognition beep. The beep sounds when the RFID reader has scanned the RFID tag data.</td>
<td>Off (\Rightarrow) On*</td>
</tr>
</tbody>
</table>

* Factory setting

10.1.2 Specific identifications for titration

Navigation: [Home] > [Titration] > [Identification]

The titration application provides (as with the **Weighing** application) 4 identifications. The available identifications have been adapted to the specific titration requirements.

Identifications can be configured here, i.e. named and activated/deactivated.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID1 Name</td>
<td>Defines a designation (max. 20 characters). This field is prepared for use as a sample identifier (details below). In contrast to the other identifications, identification 1 cannot be deactivated (identification is essential for interaction with the titrator).</td>
<td>Any (ID 1)*</td>
</tr>
<tr>
<td>ID2 Name</td>
<td>Activates/deactivates identification 2. Defines the designation (max. 20 characters).</td>
<td>Off (\Rightarrow) On* (ID 2)*</td>
</tr>
<tr>
<td>ID3 Name</td>
<td>Activates/deactivates the correction factor. Defines the designation (max. 20 characters). This numeric field is intended for entry of the correction factor to be used for titration.</td>
<td>Off (\Rightarrow) On* (Corr. f.)*</td>
</tr>
<tr>
<td>ID4 Name</td>
<td>Activates/deactivates the density. Defines the designation (max. 20 characters). This numeric field is intended for entry of the density to be used for titration.</td>
<td>Off (\Rightarrow) On* (Density)*</td>
</tr>
</tbody>
</table>

* Factory setting
Identification management

Once the identifications have been configured, they can be assigned a content. The field content can be edited with the [Edit Data] function key. When this function key is tapped, a window is displayed in which the values of the activated identifications can be edited (the name allocated in the configuration is displayed as a parameter).

The activated identifications are written to the RFID tag together with the determined sample weight, when the [Write RFID] function key is tapped.

The following rules apply to data entry:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 1</td>
<td>Max. 20 alphanumeric characters</td>
</tr>
<tr>
<td>ID 2</td>
<td>Max. 20 alphanumeric characters</td>
</tr>
<tr>
<td>Corr. f.</td>
<td>Numerical value, 0 … 1000000.0000 (1.0)*</td>
</tr>
<tr>
<td>Density</td>
<td>Numerical value, 0 … 100.0000 (1.0)*</td>
</tr>
</tbody>
</table>

* Factory setting

To automate the use of ID 1 as a sample ID, the Auto increment ID1 option can be activated. If this option is selected, the field content of ID 1 is incremented by 1 after each completed weighing (if the last character is not numerical, a digit is added).

See [Specific RFID option settings » 134].

The values of Corr. f. and Density are reset to the initial value 1.0 after each completed weighing. This prevents a once entered value from being unintentionally used for further samples.

If a larger number of samples are to be provided with the same correction factor and/or density, it is better and safer to enter this data in the respective titrator method.

Display as information fields

It is recommended to display (activated) identifications as information fields.

10.1.3 Specific function keys for titration

Navigation: [] » [Titration] » [] > Function Keys

Function keys enable direct access to specific functions and settings in the application. A function can be activated by tapping a key.

The function keys are displayed in the application at the bottom of the display. The numbers define the sequence in the display.

• Activate or deactivate function keys by tapping.
• To redefine the sequence, all function keys must be deactivated and subsequently activated in the required sequence.

The arrow buttons can be used to page forward or back to a menu page.

• Application is activated.

1 Press [].

⇒ A window with application-dependent settings appears.

2 Tap Function Keys > [Define].

3 Select the Function Keys which you need.

⇒ The function key is automatically numbered.

4 Change the settings and confirm with [OK].

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit Data</td>
<td>Displays a window for editing identifications.</td>
</tr>
<tr>
<td>Write RFID</td>
<td>Starts writing to the RFID tag.</td>
</tr>
</tbody>
</table>
10.1.4 Specific protocol information for titration

Navigation: [Home] > [Titration] > [Protocol]

Here you define which data appears in the protocols. This large menu item is divided into three sub-menus. They enable you to make additional settings for the application. The rest of the available protocol data corresponds to the data for the Weighing application and is not described here.

The numbered data items are printed in the protocols. The numbers determine the sequence in the printout.

- Information can be activated or deactivated by tapping. The sequence of the keys is automatically updated.
- To redefine the sequence, all information must be deactivated and subsequently activated in the required sequence.
- Application is activated.

1. Press (1).
 - A window with application-dependent settings appears.
2. Tap Protocol > [Define].
 - Protocol window appears.
3. Tap (e.g. Header) > [Define].
4. Select the information key which you need.
 - The information key is automatically numbered.
5. Confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

- A printer is connected and activated as an output device in the peripheral device settings.
 - To print out the settings, press (Print).

Header line of protocols

Use this sub-menu to define which data is printed in the protocol header (before the results).

Recording of single values

This submenu can be used to define the information to be reported for each individual result.

Protocol footer

This submenu can be used to define the information to be printed in the protocol footer after the results (single values).

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>Define the information to be printed in the protocol header (before the results).</td>
<td>Appl. Name*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Title 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SNR</td>
</tr>
<tr>
<td></td>
<td>ID 1 and ID 2 = records the defined identification.</td>
<td>Levelcontrol</td>
</tr>
<tr>
<td></td>
<td>Density = records the density.</td>
<td>Density</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MW-Method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blank Line</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Blank Lines</td>
</tr>
</tbody>
</table>
10.2 Working with the titration application

Navigation: [Settings] > [Titration]

This application requires the use of the optional accessory SmartSample or EasyScan Flex. The supplied drip tray and weighing pan of the optional accessory SmartSample must be changed according to the enclosed assembly instructions.

Initial settings

To perform a weighing with RFID, at least 2 of the following function keys must be activated.

- **Edit Data** – Activate function keys.
- **Write RFID**

Note

When the application is started, the [Write RFID], [Read RFID] and [Start] function keys (if activated) are inactive and grayed out.

Procedure

The procedure is very similar to the Weighing application. A brief description of the procedure and features of the Titration application is provided.

Procedure with SmartSample

- Application is activated.
- SmartSample is connected and configured.
 1. Place a beaker with RFID tag on the weighing pan.
 - The balance detects and checks the RFID type and activates the [Read RFID] function key (if activated).
 - If the Auto start data editing option is selected, an identification editing window is opened. Relevant data can be entered here.
2. Press [T].
 - The balance is tared.
 - The [Write RFID] function key is activated.

3. Place the sample in the beaker.
 or
 Remove the empty beaker from the weighing pan. Place the sample in the beaker. Place the beaker with the sample back on the weighing pan.
 - The balance displays the sample weight.

4. Press [Write RFID] to write the data (activated identifications and weight) to the RFID tag of the beaker.
 - The balance waits for a stable weight display.
 - The data is written to the RFID tag of the beaker. If the Auto print when writing option is activated, the data is simultaneously printed on the printer (if a printer is connected).
 - The balance displays a message confirming that the data has been successfully written (all written data is also displayed).

5. Remove the beaker from the weighing pan.
 - The [Read RFID] and [Write RFID] function keys (if activated) are inactive and grayed.
 - Weighing is complete.
 - The Corr. f. and Density fields are reset to 1.0.
 - If the Auto increment ID1 option is activated, ID 1 is incremented by 1.

Procedure with EasyScan Flex

- Application is activated.
- EasyScan Flex is connected and configured.

1. Place a beaker with RFID tag on the EasyScan Flex.
 - The balance detects and checks the RFID type and activates the [Start] and [Read RFID] function keys (if activated).
 - If the Auto start data editing option is selected, an identification editing window is opened. Relevant data can be entered here.

2. Press [Start].
 - The balance sets potentially present RFID data to invalid and activates the [Write RFID] function key.

3. Place a beaker on the weighing pan.
 - The balance checks the beaker presence.

4. Press [T].
 - The balance is tared.
 - The [Write RFID] function key is activated.

5. Place the sample in the beaker.
 - The balance displays the sample weight. If the Auto print when writing option is activated, the data is simultaneously printed on the printer (if a printer is connected).

6. Press [Write RFID] to write the data (activated identifications and weight) to the RFID tag of the beaker.
 - The balance waits for a stable weight value and then stores temporarily Tare, Gross, Net values.

7. Place the beaker on the EasyScan Flex.
 - The balance detects and checks the RFID tag and write data to the RFID tag on the beaker.
 - The balance displays a message confirming that the data has been successfully written (all written data is also displayed).

8. Remove the beaker from the EasyScan Flex.
 - The [Read RFID] and [Write RFID] function keys (if activated) are inactive and grayed.
 - Weighing is complete.
 - The Corr. f. and Density fields are reset to 1.0.
 - If the Auto increment ID1 option is activated, ID 1 is incremented by 1.
Identifications can be edited at any time during this procedure (preferably before writing data to the RFID tag) with the **Edit Data** function key.
11 Sample Track Application

All application settings are saved under the active user profile.

The Sample Track application is used for manual dosing with content control management. The application is used together with the RFID reader and provides the opportunity to write data on RFID tags, copy data from one tag to another and control the information stored in the RFID tags. A RFID tag can either be a Smart Tag which can be stuck to any container or the RFID chip of a dosing head, e.g. if the application is used with the HPD.

1. Press [].
2. Tap the [Sample Track] icon in the selection window.
 ↪ The selected application is active.
 ↪ Some of the specific function keys and data fields for Sample Track are activated by default (factory defaults).
 ↪ The balance is ready for manual dosing with Sample Track.

Only the settings and functions that differ from those of the Weighing application are described in detail below.

Navigation: [Sample Track]

11.1 Settings for Sample Track application

Navigation: [Sample Track] > [] → []

Several specific settings are available for the application Sample Track. You can use them to adapt the application to your needs.

Most of the setting options are the same as for the Weighing application. Only the settings that differ are described below.

Unlike the Weighing application, no custom unit can be specified. The MinWeigh feature is available.

The arrow buttons can be used to page forward or back to a menu page.

- Application is activated.
 1. Press [].
 ↪ A window with application-dependent settings appears.
 2. Select the required menu item.
 3. Change the settings and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFID Options</td>
<td>Defines settings of the RFID reader.</td>
<td>See [Specifications for RFID options 141]</td>
</tr>
<tr>
<td>Dosing data fields</td>
<td>Defines steps of the manual dosing.</td>
<td>See [Specifications for dosing data fields 142]</td>
</tr>
<tr>
<td>Data output</td>
<td>Defines the data outputs of an RFID tag.</td>
<td>See [Defining data output 142]</td>
</tr>
<tr>
<td>Function Keys</td>
<td>Define which function keys for Sample Track are shown at the bottom of the display. These keys enable direct access to specific functions.</td>
<td>See [Specific function keys for Sample Track 147]</td>
</tr>
<tr>
<td>Info Field</td>
<td>Define which info fields are shown on the display.</td>
<td>See [Specific info fields for Sample Track 148]</td>
</tr>
</tbody>
</table>

11.1.1 Specifications for RFID options

Navigation: [Sample Track] > [] > [] > RFID Options > [Define]

This menu item can be used to define the options of RFID tag and RFID reader.
• Application is activated.
1 Press `[Menu]`.
 ⇒ A window with application-dependent settings appears.
2 Tap `RFID Options` > `[Define]`.
 ⇒ A selection window appears.
3 Select the required menu item.
4 Tap `[On]`.
5 Confirm with `[OK]`.
You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFID recognition beep</td>
<td>Activates/deactivates the RFID recognition beep.</td>
<td>Off</td>
</tr>
<tr>
<td>Update RFID tag at end of series</td>
<td>Defines, whether the RFID tag should be updated at the end of a series.</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>During a series, you have to scan the RFID tag after every sample.</td>
</tr>
<tr>
<td></td>
<td>On</td>
<td>During a series, you have to scan the RFID tag only at the beginning and at the end of a series.</td>
</tr>
<tr>
<td>RFID tag data fields</td>
<td>Select following parameters if you want to be able to modify them when writing information on a RFID tag.</td>
<td>Substance*</td>
</tr>
</tbody>
</table>

* Factory setting

11.1.2 Specifications for dosing data fields

Navigation: `[Menu]` > `[Sample Track]` > `[Sample Track]` > `[Dosing data fields]` > `[Define]`

This menu item can be used to define the dosing steps which appear when dosing with the Sample Track option.

• Application is activated.
1 Press `[Menu]`.
 ⇒ A window with application-dependent settings appears.
2 Tap `Dosing data fields` > `[Define]`.
 ⇒ A selection window appears.
3 Select the required menu item.
4 Confirm with `[OK]`.
You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosing data fields</td>
<td>Following parameters can be selected. The values for these parameters can be modified when dosing with the Sample Track option.</td>
<td>Sample ID*</td>
</tr>
</tbody>
</table>

* Factory setting

11.1.3 Defining data output

Navigation: `[Menu]` > `[Sample Track]` > `[Sample Track]` > `[Data output]` > `[Define]`
The balance can communicate with various peripheral devices. With the option **Data output** it can be defined which data will be sent to the peripheral device. Furthermore, the format of the output data can be modified whether the peripheral device is a label printer, common printer or data system.

Note
Data in XML format that are sent to a host computer can not be modified.

The values for data and head are almost the same.

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample label</td>
<td>To specify the sample data to be printed on the labels. The sample labels are usually affixed to the sample container.</td>
<td>See [Specifying the contents of sample labels › 143]</td>
</tr>
<tr>
<td>Sample protocol</td>
<td>To specify the sample data sent to a strip printer.</td>
<td>See [Specifying the contents of sample protocols › 145]</td>
</tr>
<tr>
<td>Sample data output</td>
<td>To select the output of sample data to a particular device.</td>
<td>See [Defining the target devices for sample data › 147]</td>
</tr>
<tr>
<td>Sample data output mode</td>
<td>To specify if data will be sent automatically or manually after dosing is complete.</td>
<td>See [Defining the output mode for sample data › 147]</td>
</tr>
<tr>
<td>RFID tag label</td>
<td>To specify the content of the label printed on the label printer.</td>
<td>See [Specifying the contents of sample labels › 143]</td>
</tr>
<tr>
<td>RFID tag protocol</td>
<td>Specifies the data sent to a strip printer.</td>
<td>See [Specifying the contents of sample protocols › 145]</td>
</tr>
<tr>
<td>RFID tag data output</td>
<td>To select the output of data to a particular device, e.g. you can decide whether or not you want to print a label.</td>
<td>See [Defining the target devices for sample data › 147]</td>
</tr>
<tr>
<td>RFID tag data output mode</td>
<td>To specify whether data is sent automatically or manually.</td>
<td>See [Defining the output mode for sample data › 147]</td>
</tr>
</tbody>
</table>

11.1.3.1 Specifying the contents of sample labels

Navigation: [Sample Track] > [Data output] > [Define] > [Sample label] > [Define]

If there is a label printer connected to the balance, dosing results can be printed on labels. The labels consist of a plain text section and a code section with a matrix code or a bar code. Text and code can be defined by the user.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>To specify the text in the text section of the label. With code: max. of 5 label text items. Without code: max. of 8 label text items. For a detailed description of the values, see [Values for text and matrix code › 113].</td>
<td>Substance</td>
</tr>
<tr>
<td>Matrix code</td>
<td>Defines the matrix code.</td>
<td>ID4</td>
</tr>
</tbody>
</table>

Note

The parameters described are a maximum of all parameters possible. Not all parameters appear in each submenu. The factory settings depend on the selected submenu.
Sample Track Application

Label layout
Select a preset layout scheme for the label.

<table>
<thead>
<tr>
<th>Layout 1 - Layout 10 (Layout 7*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label quantity</td>
</tr>
<tr>
<td>Specifies the amount of labels that are printed for each sample (max. 4 labels).</td>
</tr>
</tbody>
</table>

| 1 - 4 (1*) |

Label barcode
Defines the content of the bar code type Code 128.

Note
- With a code 128, only one of the following items is allowed: `[Substance]`, `[Sample ID]`, `[Lot ID]` or `[Dos. value]`.
- The factory settings depend on the selected menu Sample label or Head label.

Cutter man. series
Specifies whether the labels are cut after each dosing [Samples] or at the end of the dosing sequence [Series].

Note
- For dosing series with autosampler: all labels will be cut at the end of the dosing sequence.

* Factory setting

Values for text and matrix code

Navigation: []] > [Sample Track] > [] > Data output > [Define] > Sample label > [Define]

Note
The parameters described are a maximum of all parameters possible. Not all parameters appear in each submenu.

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance</td>
<td>Prints the identification of the substance (retrieved from the RFID tag).</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Prints the Sample ID entered (either in the dosing steps or through the function key [Sample ID]).</td>
</tr>
<tr>
<td>Lot ID</td>
<td>Prints the Lot ID from the current RFID tag.</td>
</tr>
<tr>
<td>Content</td>
<td>Initial weight of the powder.</td>
</tr>
<tr>
<td>Tolerance</td>
<td>Specifies the accuracy specified for the current dosing (only powder dosing).</td>
</tr>
<tr>
<td>User ID</td>
<td>Prints the User ID entered (either in the dosing data fields or through the function key [User ID]).</td>
</tr>
<tr>
<td>Dispense date</td>
<td>Date of the current dosing</td>
</tr>
<tr>
<td>Dispense time</td>
<td>Time of the current dosing</td>
</tr>
<tr>
<td>Exp. date</td>
<td>Expiry date of the substance in the current RFID tag.</td>
</tr>
<tr>
<td>Retest date</td>
<td>Retest date defined in the settings of the RFID tag.</td>
</tr>
<tr>
<td>Balance ID</td>
<td>Identification of the balance defined in [System] > [Info].</td>
</tr>
<tr>
<td>ID1 ... ID4</td>
<td>Prints the title and contents of the four customizable fields defined in the settings.</td>
</tr>
<tr>
<td>Title 1, Title 2</td>
<td>Prints the titles defined in the menu.</td>
</tr>
<tr>
<td>Validity</td>
<td>Indicates whether the result is VALID (within the tolerance) or INVALID (out of tolerance).</td>
</tr>
<tr>
<td>MinWeigh</td>
<td>Indicates whether the "MinWeigh" criteria have been met (VALID or INVALID). If the MinWeigh function is not selected [Off] will be printed instead.</td>
</tr>
<tr>
<td>Dose duration</td>
<td>Prints the duration of the dosing cycle in seconds.</td>
</tr>
<tr>
<td>Target quantity</td>
<td>Prints the target quantity of the dosing.</td>
</tr>
<tr>
<td>Label index</td>
<td>Counts the number of labels printed for a particular sample.</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Note</td>
<td>This information may be of interest for quality assurance and traceability.</td>
</tr>
<tr>
<td>Tag type</td>
<td>Type of RFID used for the current dosing.</td>
</tr>
<tr>
<td>Tag ID</td>
<td>Serial number of the RFID tag used for the current dosing.</td>
</tr>
</tbody>
</table>

Defining the label layout

Navigation: [H] > [Sample Track] > [C] > Data output > [Define] > Sample label > [Define] > Label layout

The following 10 preset layout schemes are available:

<table>
<thead>
<tr>
<th>No.</th>
<th>Specimen</th>
<th>Number of text rows</th>
<th>Font size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>large</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>small</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>large</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>small</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>small</td>
<td></td>
</tr>
</tbody>
</table>

Note
The layout schemes respect the selected label text items and their printing order. If too many text items have been selected, the label may run out of space (especially with matrix code or bar code). In this case, the label will just contain the text items that fit into the available space. You may now rearrange the printing order of the text items in a way that the most important items are printed first (printing always starts with item 1). Alternatively select another layout scheme that accommodates more text items, i.e. one with a smaller font size or one without a code. The above restrictions apply to text items only, the codes (matrix code or bar code) will always be complete.

11.1.3.2 Specifying the contents of sample protocols

Navigation: [H] > [Sample Track] > [C] > Data output > [Define] > Sample protocol > [Define]

If you have a strip printer connected to your balance you may record the results and other related information on paper.

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>Define the information to be reported for each single result.</td>
<td>See [Defining header and footer 115]</td>
</tr>
<tr>
<td>Single value</td>
<td>Define the information to be reported for each single result.</td>
<td>See [Defining single value 116]</td>
</tr>
<tr>
<td>Footer</td>
<td>Define information to be printed in the protocol footer after the results (single values).</td>
<td>See [Defining header and footer 115]</td>
</tr>
</tbody>
</table>

Defining header and footer

Navigation: [H] > [Sample Track] > [C] > Data output > [Define] > Sample protocol > [Define]
The parameters described are a maximum of all parameters possible. Not all parameters appear in each submenu.

The factory settings depend on the selected submenu.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appl. Name</td>
<td>Prints the application name.</td>
</tr>
<tr>
<td>Title 1, Title 2</td>
<td>Prints the titles defined in the menu.</td>
</tr>
<tr>
<td>Date/Time</td>
<td>Prints date and time.</td>
</tr>
<tr>
<td>User ID</td>
<td>Prints the User ID entered in the dosing data fields or with function key [User ID]).</td>
</tr>
<tr>
<td>Balance Type</td>
<td>Balance type identification.</td>
</tr>
<tr>
<td>SNR</td>
<td>Serial number of terminal and modules.</td>
</tr>
<tr>
<td>Balance ID</td>
<td>Identification of the balance, defined in Info.</td>
</tr>
<tr>
<td>Levelcontrol</td>
<td>Indicates if the balance is correctly leveled.</td>
</tr>
<tr>
<td>ID1 ... ID4</td>
<td>Prints the title and contents of the four customizable fields defined in the settings. Note ID1 ... ID4 are just the default placeholders. They will be replaced with the field titles defined in the settings.</td>
</tr>
<tr>
<td>Last cal.</td>
<td>Prints the date of the last calibration.</td>
</tr>
<tr>
<td>Signature</td>
<td>Prints a line for signature.</td>
</tr>
<tr>
<td>Blank Line</td>
<td>Prints a blank line.</td>
</tr>
<tr>
<td>Dash Line</td>
<td>Prints a dashed line. Two dash lines can be set.</td>
</tr>
<tr>
<td>3 Blank Lines</td>
<td>Prints 3 blank lines at the end of the printout.</td>
</tr>
</tbody>
</table>

Defining single value

Navigation: [Sample Track] > [Data output] > [Define] > Sample protocol > [Define] > Single value > [Define]

In this submenu the information printed for each individual dosing can be defined.

Note
The parameters described are a maximum of all parameters possible. Not all parameters appear in each submenu.

The factory settings depend on the selected submenu.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single value</td>
<td>In this submenu the information displayed on the screen when touching the function key [Write RFID] can be defined. For a detailed description of the values, see [Values for text and matrix code > 113]. Note The parameters described are a maximum of all parameters possible. Not all parameters appear in each submenu. The factory settings depend on the selected submenu.</td>
</tr>
<tr>
<td>Tag ID</td>
<td>prints the tag identification data.</td>
</tr>
<tr>
<td>Values</td>
<td>Header</td>
</tr>
</tbody>
</table>
11.1.3.3 Defining the target devices for sample data

Navigation: [Analytical Balances] > [Sample Track] > [Data output] > [Define] > [Sample data output] > [Define]

In this section the output of sample data to a particular device can be selected.

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol*</td>
<td>Sends sample data to the strip printer.</td>
</tr>
<tr>
<td>Label*</td>
<td>Sends sample data to the label printer.</td>
</tr>
</tbody>
</table>

* Factory setting

Note
The balance always transmits the full XML data set to the host computer. The amount of data sent in XML format cannot be defined.

11.1.3.4 Defining the output mode for sample data

Navigation: [Analytical Balances] > [Sample Track] > [Data output] > [Define] > [Sample data output mode]

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual*</td>
<td>No automatic transfer of data. To transfer the dosing result to the selected devices, press [].</td>
</tr>
<tr>
<td>Automatic</td>
<td>Transfers the dosing result automatically to the selected devices after a dosing cycle has been completed.</td>
</tr>
</tbody>
</table>

* Factory setting

11.1.4 Specific function keys for Sample Track

Navigation: [Analytical Balances] > [Sample Track] > [Function Keys]

This menu item allows you to enable the specific function keys listed below for using statistics.

All other function keys are the same as for the Weighing application.

The function keys are displayed in the application at the bottom of the display. The numbers define the sequence in the display.

- Activate or deactivate function keys by tapping.
- To redefine the sequence, all function keys must be deactivated and subsequently activated in the required sequence.
- Application is activated.

1. Press [].
 - A window with application-dependent settings appears.
2. Tap Function Keys > [Define].
3. Select the Function Keys which you need.
 - The function key is automatically numbered.
4. Change the settings and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Write RFID</td>
<td>To enter new date or to edit data of a used RFID tag.</td>
</tr>
<tr>
<td>[] Start</td>
<td>Starts a dosing / weighing cycle.</td>
</tr>
<tr>
<td>[] Read RFID</td>
<td>Displays the data of the current RFID tag.</td>
</tr>
<tr>
<td>[] Copy RFID</td>
<td>Copies data from one RFID tag to another RFID tag.</td>
</tr>
</tbody>
</table>
| **Set content** | Stores the net weight of the powder that has been filled into the powder container.
Note
The net weight can be used to write the dosing head. |
| **User ID** | To define the user ID. |

Factory settings: [Write RFID], [Start], [Read RFID], [Copy RFID] and [Set content] activated, in this sequence.

11.1.5 Specific info fields for Sample Track

Navigation: [Sample Track] > Info Field

This menu item allows you to enable the specific info fields listed below for using Sample Track function. All other info fields are the same as for the **Weighing** application.

- Information fields can be activated or deactivated by tapping.
- To redefine the sequence, all information fields must be deactivated and then activated in the required sequence.
- Application is activated.

1. Press [Info Field].
 - A window with application-dependent settings appears.
2. Tap **Info Field** > [Define].
3. Select the information fields that you need.
 - The information field is automatically numbered.
4. Change the settings and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance</td>
<td>Displays the identification of the substance.</td>
</tr>
<tr>
<td>Samples</td>
<td>Displays the total number of samples.</td>
</tr>
<tr>
<td>Rem. samples</td>
<td>Counts and displays the number of samples remaining.</td>
</tr>
<tr>
<td>Rem. dosages</td>
<td>Displays the number of dosing cycles.</td>
</tr>
</tbody>
</table>

* Factory setting
11.2 Working with the Sample Track application

11.2.1 Dosing powder with a target quantity

- Sample Track is chosen as application.
- RFID reader is installed and ready for use.
- Dosing head or other container is filled and the RFID tag stores the information needed.
- **Target quantity** is selected in [Define] > Dosing data fields > [Define].

1. To start the dosing procedure, tap [Start].
2. Scan RFID tag on the RFID reader.
 - RFID reader reads data.
 - The data is being displayed.
3. Remove RFID tag from the RFID reader.
4. If dosing with HPD, install dosing head on HPD.
5. To change the data displayed, tap on the corresponding text field.
6. Enter the correct data and confirm with [OK].
7. Place sample vessel on the weighing pan and confirm with [OK].
8. Dose powder into the sample vessel manually.
 - The SmartTrac graph assists you. This is the coarse range indicator that helps you dosing the powder quickly until you approach the target area. As soon as the upper bar (fine range indicator) starts moving to the right you should slow down the dosing procedure and carefully approach the target value in the middle between the two tolerance marks.
 - As soon as the quantity is within tolerance both indicator bars turn from red to green.
9. If the target quantity is reached, confirm with [OK].
10. **Note**
 - If you have stored the Content [g] of your dosing head or container, you need to scan the RFID tag after dosing to update the Content [g] of your dosing head or container. If asked to, scan RFID tag on RFID reader.
 - The RFID reader updates the data stored, e.g. the remaining amount of powder.
 - The result of the manual dosing appears.
 - The label and/or record are printed.

11.2.2 Dosing powder without target quantity

- Sample Track is chosen as application.
- RFID reader is installed and ready for use.
- Dosing head or other container is filled and the RFID tag stores the information needed.
- **Target quantity** is deselected in [Define] > Dosing data fields > [Define].

1. To start the dosing procedure, tap [Start].
2 Scan RFID tag on the RFID reader.
 ⇒ RFID reader reads data.
 ⇒ The data is being displayed.
3 Remove RFID tag from the RFID reader.
4 If dosing with HPD, install dosing head on HPD.
5 To change the data displayed, tap on the corresponding text field.
6 Enter the correct data and confirm with [OK].
7 Dose powder into the sample vessel manually.
8 If your target quantity is reached, confirm with [OK].
 ⇒ The result of the manual dosing appears.
9 Scan RFID tag on the RFID reader.
 ⇒ The RFID Reader updates the data stored, e.g. the remaining amount of powder.
 ⇒ The label and/or record are printed.

11.2.3 Working with sample counter

The function Sample counter is used to dose several samples with the same powder and quantity.
If you want to dose several samples with the same powder and quantity, Update RFID tag at end of series allows you to scan the RFID tag only at the beginning and at the end of a dosing series. If this option is deactivated, the RFID tag needs to be scanned before each sample.

- Sample Track is chosen as application.
- RFID reader is installed and ready for use.
- Dosing head or other container is filled and the RFID tag stores the information needed.

1 If you want to use the function Update RFID tag at end of series, make sure following setting is defined as On: [RFID Options] > [Define] > Update RFID tag at end of series > [On].
2 To start the dosing procedure, tap [Start].
3 Scan RFID tag on the RFID reader.
 ⇒ RFID reader reads data.
 ⇒ The data is being displayed.
4 Remove RFID tag from the RFID reader.
5 If dosing with HPD, install dosing head on HPD.
6 Enter the number of samples and confirm with [OK].
7 To change other data displayed, tap on the corresponding text field.
8 Enter the correct data and confirm with [OK].
9 Place sample vessel on the weighing pan and confirm with [OK].
10 Dose powder into the sample vessel manually.
11 If the target quantity is reached, confirm with [OK].
 ⇒ The result of the manual dosing appears.
12 To continue with the next sample, tap [Next] and follow the instructions given. After the last sample, you will be asked to scan the RFID tag to update the data stored.
 To abort procedure press [C].
 ⇒ The label and/or record are printed.
After aborting an unfinished series
- You have aborted a running series.
- You want to start a new series or continue with the aborted series.

1 Press [Start].
 - You get the following options:
 [Continue actual series]: To resume the current series starting with the next sample. The previously aborted sample will not be dosed again.
 [New series]: To define a new series.
 [Cancel]: To close the window temporarily; it will reappear when starting the next dosing.

2 Select one of these options.

11.2.4 Displaying RFID tag information

The menu [Read RFID] displays information stored in the current dosing head.
- Function key [Read RFID] is active.

1 Tap [Read RFID].
2 Scan RFID tag.
 - The display shows the data stored in the dosing head.
3 To return to the main window, tap [OK].

11.2.5 Copying data from one RFID tag to another

- Function key [Copy RFID] is active.

1 Tap [Copy RFID].
2 Scan source RFID tag.
 - The data is copied to the instrument's internal memory.
 - A message to scan the target object appears.
3 Scan target RFID tag.
4 To make another copy, remove RFID tag from RFID reader and scan a second RFID tag.
 To return to the home screen, confirm with [OK] and remove RFID tag.
 - The data is now copied from the instrument's internal memory to the new RFID tag.

11.2.6 Writing data on an RFID tag

Set content of a container
You can store the weight of the amount of powder in the container in the internal memory of the instrument.
When writing data on the new RFID tag, you can use the stored data.
- Function key [Set content] is active.

1 Put an empty powder container on weighing pan.
2 To tare the instrument, press [T].
3 Pour your powder into the powder container.
4 Tap [Set content] to store the value on the value.
 - The value is stored in the internal memory of the instrument. When writing to the RFID tag, the value is automatically entered in the text field Content [g].

Entering RFID data
- Function key [Write RFID] is active.

1 Tap [Write RFID].
2 Scan target RFID tag.
1 **Note**

If a barcode reader is connected to your instrument and your substance provides a barcode, scan the product barcode instead of entering the name manually. The name of the substance appears in the respective information field and can be printed on the protocol or labels. Enter the name of the substance and confirm with **[OK]**.

(max. of 20 characters)

2 Enter the following data: **Substance, Lot ID, Filling date, Exp. date** and **Content [g]**.

Note

Once the **Exp. date** is reached an error message appears and you will not be able to continue dosing.

If you have stored the content in the internal memory, using **Set content**, the value is automatically written in the textfield **Content [g]**.

Note

With the value **Content [g]** the counter calculates the remaining amount of substance.

3 To store data on the RFID tag, confirm with **[OK]**.

⇒ The instrument is writing data on RFID tag.

⇒ The data written on RFID tag is being displayed.

4 Confirm data with **[OK]**.

⇒ The RFID tag is ready.
12 Density Application

Navigation: [Mass] > [Density]

The Density application is used for determining the density of solids and liquids as well as pasty substances. Each sample can be assigned an identification and the integrated statistics function can be used for statistical evaluation of measurements. Density determination is carried out based on Archimedes’ principle according to which a body immersed in a fluid undergoes an apparent loss in weight which is equal to the weight of the fluid it displaces.

All application settings are saved under the active user profile.

The hanger opening in the balance can be used for density determination. The optional density kit should be used for determining the density of solids. This includes all necessary accessories and aids for convenient and precise density determination. The density kit is supplied with separate instructions with a description of installation and use. A sinker is additionally required for determining the density of liquids and is available from a METTLER TOLEDO representative.

Alternatively, the Density application can also be used for determining the density of liquids using a pycnometer. Pycnometers are available from companies specializing in lab supplies.

A gamma sphere is required for determining the density of pasty substances. The names of suppliers can be obtained from an authorized representative.

Note
Refer to the separate instructions supplied with the accessories. These contain useful information for working with these aids and their maintenance and use.

Only the settings and functions that differ from those of the Weighing application are described in detail below.

Selecting the application
1 Press [Density].
2 Tap the [Density] icon in the selection window.
 ➞ The selected application is active.
 ➞ Some of the specific function keys and information fields for density determination are activated by default (factory defaults).
 ➞ The balance is ready for determining the density of solids using the auxiliary liquid, water.

12.1 Density application settings

Navigation: [Mass] > [Density] > [Density]

Various specific settings are available for density determination which can be used for adapting applications to suit specific requirements.

Most of the setting options are the same as for the Weighing application. Only the settings that differ are described below.

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Defines the density determination method.</td>
<td>See [Selecting the density determination method ‣ 154]</td>
</tr>
<tr>
<td>Aux. Liquid</td>
<td>Defines the auxiliary liquid.</td>
<td>See [Selecting an auxiliary liquid ‣ 154]</td>
</tr>
<tr>
<td>Statistics</td>
<td>Activates/deactivates the statistics for the selected method.</td>
<td>See [Activation or deactivation of statistics ‣ 154]</td>
</tr>
<tr>
<td>Result Output</td>
<td>Defines how the result of the density determination is calculated and displayed.</td>
<td>See [Specifications for calculation and result display ‣ 155]</td>
</tr>
</tbody>
</table>
12.1.1 Selecting the density determination method

Navigation: [Home] > [Density] > [Method]

This menu item can be used to define the density determination method.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>Determines the density of non-porous solids using an auxiliary liquid.</td>
<td>See [Determination of the density of non-porous solids > 160]</td>
</tr>
<tr>
<td>Aux. Liquid</td>
<td>Determines the density of liquids using a sinker.</td>
<td>See [Determination of the density of liquids using a sinker > 161]</td>
</tr>
<tr>
<td>Pasty Subst.</td>
<td>Determines the density of pasty substances using a gamma sphere.</td>
<td>See [Determination of the density of pasty substances using a gamma sphere > 162]</td>
</tr>
<tr>
<td>Pycnometer</td>
<td>Determines the density of liquids using a pycnometer.</td>
<td>See [Determination of the density of liquids using a pycnometer > 163]</td>
</tr>
<tr>
<td>Solid porous</td>
<td>Determines the density of porous solids using an additional oil bath.</td>
<td>See [Determination of the density of porous solids > 164]</td>
</tr>
</tbody>
</table>

Factory setting: [Solid] activated.

12.1.2 Selecting an auxiliary liquid

Navigation: [Home] > [Density] > [Aux. Liquid]

This menu item can be used to define an auxiliary liquid. This setting is only used for determining the density of solids.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>The density of distilled water at temperatures from 10.0°C to 30.0°C is stored in the balance.</td>
</tr>
<tr>
<td>Ethanol</td>
<td>The density of ethanol at temperatures from 10.0°C to 30.0°C is stored in the balance.</td>
</tr>
<tr>
<td>Others</td>
<td>Any auxiliary liquid whose density at the current temperature must be known.</td>
</tr>
</tbody>
</table>

Factory setting: [Water] activated.

12.1.3 Activation or deactivation of statistics

Navigation: [Home] > [Density] > [Statistics]

The balance can store specific statistics for each density determination method. When the statistics function is activated, a request is made at the end of each density determination to include the result in the statistics.

This menu item can be used to activate or deactivate the statistics function.

Note
To use the statistics, activate both [Start] and [Temp.AL] function keys.

You can define the following parameters:
12.1.4 Specifications for calculation and result display

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td>Activates/deactivates the statistics function.</td>
<td>On</td>
</tr>
</tbody>
</table>

* Factory setting

Navigation:

This menu item can be used to define the number of decimal places and unit used for calculation and display of the density determination result and also whether the air buoyancy is to be taken into account in calculation.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of decimalpoints</td>
<td>Defines the number of decimal places. The density determination result can be displayed and recorded with 1 to 5 decimal places.</td>
<td>1</td>
</tr>
<tr>
<td>Compensation</td>
<td>Defines the correction factor for force calibration.</td>
<td>With*</td>
</tr>
<tr>
<td></td>
<td>With = the density determination result can be corrected by the force calibration correction factor and mean air density.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Without = no correction takes place.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>With/Without = the corrected and uncorrected result is displayed and recorded.</td>
<td></td>
</tr>
<tr>
<td>Density Unit</td>
<td>Defines the unit to be used for density determination.</td>
<td>g/cm³</td>
</tr>
<tr>
<td></td>
<td>g/cm³ = grams per cm³.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kg/m³ = kilograms per m³.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g/l = grams per liter.</td>
<td></td>
</tr>
</tbody>
</table>

* Factory setting

12.1.5 Specific function keys for density determination

Navigation:

This menu item can be used to activate the following specific function keys for density determination.

All other function keys are the same as for the **Weighing** application.

The function keys are displayed in the application at the bottom of the display. The numbers define the sequence in the display.

- Activate or deactivate function keys by tapping.
- To redefine the sequence, all function keys must be deactivated and subsequently activated in the required sequence.

Application is activated.

1 Press \[\text{[Start]} \].

A window with application-dependent settings appears.

2 Tap **Function Keys** > \[**Define** \].

3 Select the **Function Keys** which you need.

The function key is automatically numbered.

4 Change the settings and confirm with \[**OK** \].

The arrow buttons can be used to page forward or back to a menu page.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Start]</td>
<td>Starts density determination.</td>
</tr>
</tbody>
</table>
Density AL
Defines the density of the auxiliary liquid.
Only required for determining the density of solids and if an auxiliary liquid other than water or ethanol is used.

Temp.AL
Entry of the auxiliary liquid temperature.
Only required if distilled water or ethanol is used. For other liquids, the density at the current temperature must always be entered. For methods that do not require the use of an auxiliary liquid, the key for entering the current ambient temperature can be used. This is shown in the protocols.

Vol.Sinker
Entry of the sinker volume (in cm³, max. 5 decimal places).
Only required for determining the density of liquids using a sinker.

Vol.G. Sphere
Entry of the gamma sphere volume (in cm³, max. 5 decimal places).
Only required for determining the density of pasty substances using a gamma sphere.

Vol.Pycno
Entry of the pycnometer volume (in cm³, max. 5 decimal places).
Only required for determining the density of liquids using a pycnometer.

Wgt. Pycno
Entry of the pycnometer weight.
Only required for determining the density of liquids using a pycnometer.

Result
Displays the statistics for the current density determination method.

Note
This function key only needs to be activated if the statistics function is also activated. If no results are available in the statistics, the key is inactive and cannot be actuated.

CL Result
Clears the statistics for the current density determination to start a new series of measurements.

Factory setting: [Start] and [Temp.AL] activated in this sequence.

12.1.6 Specific information fields for density determination

Navigation: [Density] > [Info Field]
This menu item provides the following information fields for density determination.
All other data fields are the same as for the Weighing application.
The information fields in the display provide constant information on, e.g. set values, measured results.
• Information fields can be activated or deactivated by tapping.
• To redefine the sequence, all information fields must be deactivated and then activated in the required sequence.
 ▪ Application is activated.
1 Press [Define].
 ⇒ A window with application-dependent settings appears.
2 Tap Info Field > [Define].
3 Select the information fields that you need.
 ⇒ The information field is automatically numbered.
4 Change the settings and confirm with [OK].
The arrow buttons can be used to page forward or back to a menu page.
You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Shows the selected density determination method.</td>
</tr>
<tr>
<td>Aux. Liquid</td>
<td>Displays the selected auxiliary liquid (determination of the density of solids).</td>
</tr>
<tr>
<td>Temp.AL</td>
<td>Displays the temperature of the auxiliary liquid (distilled water, ethanol) entered via the function key with the same name.</td>
</tr>
<tr>
<td>Density AL</td>
<td>Displays the density of the auxiliary liquid. For water or ethanol, is automatically selected from the integrated density tables. For other auxiliary liquids, the density entered via the function key with the same name is displayed.</td>
</tr>
<tr>
<td>Vol.Sinker</td>
<td>Displays the sinker volume (determination of the density of liquids using a sinker).</td>
</tr>
<tr>
<td>Vol.Gamma</td>
<td>Displays the gamma sphere volume (determination of the density of pasty substances using a gamma sphere).</td>
</tr>
<tr>
<td>Vol.Pycno</td>
<td>Displays the pycnometer volume (determination of the density of liquids using a pycnometer).</td>
</tr>
<tr>
<td>Wgt. Pycno</td>
<td>Displays the pycnometer weight (determination of the density of liquids using a pycnometer).</td>
</tr>
</tbody>
</table>

Factory setting: [Method], [Aux. Liquid] and [Temp.AL] activated in this sequence.

12.1.7 Specific protocol information for density determination

Navigation: [] > [Density] > [] > Protocol

Here you define which data appears in the protocols. This large menu item is divided into three sub-menus. They enable you to make additional settings for the application. The rest of the available protocol data corresponds to the data for the Weighing application and is not described here.

The numbered data items are printed in the protocols. The numbers determine the sequence in the printout.

- Information can be activated or deactivated by tapping. The sequence of the keys is automatically updated.
- To redefine the sequence, all information must be deactivated and subsequently activated in the required sequence.

Application is activated.
1 Press [].
 ∴ A window with application-dependent settings appears.
2 Tap Protocol > [Define].
 ∴ Protocol window appears.
3 Tap (e.g. Header) > [Define].
4 Select the information key which you need.
 ∴ The information key is automatically numbered.
5 Confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

Note
The results and data can be printed out at any time.
- A printer is connected and activated as an output device in the peripheral device settings.
 - To print out the settings, press [].

Header line of protocols
This submenu can be used to define information to be printed in the protocol header (before the results). The header is automatically printed if it has been defined as part of the protocol.
The header is printed automatically when a single value protocol is output.
Recording of single values

This submenu can be used to define the information to be reported for each individual result. Press (F2) to print a single value protocol (protocol of a single density determination).

Recording statistics

Press (F3) to print a statistics protocol. Takes place when the statistics window is open.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>Define the information to be printed in the protocol header (before the results). Method = records the selected density determination method. Aux. Liquid = records the selected auxiliary liquid (determination of the density of solids). Density AL = records the density of the auxiliary liquid. Entry via the function key with the same name. For water or ethanol, the value selected from the integrated table is recorded. Temp AL = records the temperature of the auxiliary liquid (for water and ethanol) entered via the function key with the same name. Vol Sinker = records the sinker volume (determination of the density of liquids using a sinker) entered via the function key with the same name. Vol Gamma = records the gamma sphere volume (determination of the density of pasty substances using a gamma sphere) entered via the function key with the same name. Vol Pycno = records the pycnometer volume (determination of the density of liquids using a pycnometer) entered via the function key with the same name. Wgt. Pycno =</td>
<td></td>
</tr>
<tr>
<td>Single value</td>
<td>Define the information to be recorded for each single result. Wgt. in Air = records the weight of the sample in air (determination of the density of solids). Wgt. in Liquid = records the weight of the sample in the auxiliary liquid (determination of the density of solids) or the weight of the sample substance displaced by the sinker or gamma sphere. Wgt. of content = records the weight of the sample in the pycnometer (determination of the density of liquids using a pycnometer). Vol Probe = records the volume of the sample (calculated by the firmware). Density = records the result of the current density determination.</td>
<td>Appl. Name*</td>
</tr>
</tbody>
</table>
Define the statistics to be recorded.

\[n, x, s, s.\ rel = \]

- **n** = records the number of samples in the current series of measurements.
- **x** = records the average density of all samples.
- **s** = records the absolute standard deviation within the current series of measurements.
- **s. rel** = records the relative standard deviation within the current series of measurements.

Min, Max, Diff =

- **Min** = records the lowest determined density within a series of measurements.
- **Max** = records the highest determined density within a series of measurements.
- **Diff.** = records the difference between the highest and lowest density within a series of measurements.

* Factory setting

12.1.8 Specific SmartSens and ErgoSens settings for density determination

Navigation: [Home] > [Density] > [Smart & ErgoSens]

Additional density determination settings are available for SmartSens and ErgoSens sensors. Only the settings and functions that differ from those of the Weighing application are described in detail below.

When one of the functions is activated, the green F symbol (Function) lights up in the status bar below the respective sensor.

1. Press **[Smart & ErgoSens]**.
 - A window with application-dependent settings appears.

2. Tap **Smart & ErgoSens > [Define]**.
 - A selection window appears.

3. Select the required menu item (e.g. **SmartSens left**).
 - A selection window appears.

4. Select the function and confirm with **[OK]**.

Menu structure

<table>
<thead>
<tr>
<th>Main menu</th>
<th>Submenu</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartSens left</td>
<td>Off</td>
<td>Door</td>
</tr>
<tr>
<td>SmartSens right</td>
<td>Off</td>
<td>Door</td>
</tr>
<tr>
<td>ErgoSens 1 (Aux1)</td>
<td>Off</td>
<td>Door</td>
</tr>
<tr>
<td>ErgoSens 2 (Aux2)</td>
<td>Off</td>
<td>Door</td>
</tr>
</tbody>
</table>
You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>Emulates the function key with the same name. Starts density determination.</td>
</tr>
<tr>
<td>Result</td>
<td>Emulates the function key with the same name. Opens the result window.</td>
</tr>
<tr>
<td>OK</td>
<td>Emulates pressing of the button with the same name in the dialogs (however not in the menus) for confirmation of entries and actions.</td>
</tr>
</tbody>
</table>

Factory setting: SmartSens left and right configured for door operation (draft shield). Both ErgoSens deactivated, [Off].

12.2 Working with the density application

Navigation: [Home] > [Density]

This section describes working with the Density application and the different density determination methods.

12.2.1 Determination of the density of non-porous solids

Navigation: [Home] > [Density] > [Method] > [Solid]

For the determination of the density of non-porous solids, the solid is first weighed in air and then in the auxiliary liquid. The difference in weight results in the buoyancy from which the density is calculated by the firmware.

Note
- The hanger opening for weighing below the balance can be used for this purpose.
- When working with the optional density kit, observe the information in the supplied instructions.

Select in the application-specific settings as Method [Solid]. Define the required auxiliary liquid, e.g. [Water].

If an auxiliary liquid other than water or ethanol is used, activate the [Density AL] function key and the information field with the same name. Enter the density of the auxiliary liquid at the current temperature by pressing the [Density AL] function key (in g/cm³, max. 5 decimal places). This is required as density tables are stored in the balance only for water and ethanol. The entered value is displayed in the information field with the same name. The activated [Temp.AL] function key and information with the same name are not required for density determination with an auxiliary liquid other than water and ethanol. This function key can be used to enter the current ambient temperature. This is subsequently also printed on the protocols and shows the temperature at which the density was determined.

Activate the appropriate function keys and information fields.

Start – Activate function keys.

Temp.AL

Density AL

The result of the density determination can be printed with the [Print] key. The result is stored up to completion of the next density determination with the same method and can be printed again as required.

- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [Print].
- Function keys are activated.

1 Press [Print].
 => A window with application-dependent settings appears.
2 Beside Method, tap the associated button.
 => A selection window with methods appears.
3 Tap [Solid].
4 Beside **Aux. Liquid**, tap the associated button.
 ⇒ A selection window appears.
5 Tap, e.g. **[Water]**.
6 Tap **[Temp.AL]**.
 ⇒ A numeric input window appears.
7 Enter the value (10 °C to 30 °C) and confirm with **[OK]**.
 For water and ethanol, density tables for the temperature range 10 °C to 30 °C are stored in the balance.
8 Tap **[Start]**.
 ⇒ The balance is automatically tared.
 ⇒ The balance requests that the solid is weighed in air.
9 Place the solid on the balance.
 When working with the optional density kit, observe the information in the supplied instructions.
 When working with the hanger opening, hang the solid on the hanging device.
 ⇒ The weight of the solid appears at the bottom left corner of the window.
10 Tap **[OK]** to enter the weight.
 ⇒ The weighing result is stored.
 ⇒ The balance requests that the solid is weighed in the auxiliary liquid.
11 Place the solid on the balance.
 The solid must be immersed at least 1 cm in the liquid and no air bubbles must be present in the container.
 When working with the hanger opening, the container with the auxiliary liquid must be placed below the hanging device.
12 Tap **[OK]** to enter the weight.
 ⇒ The balance determines the density of the solid.
 ⇒ The result window with compensated and/or uncompensated value appears.
 ⇒ Density determination is complete.

12.2.2 Determination of the density of liquids using a sinker

Navigation: [Density] > [Liquid]

For the determination of the density of liquids, a sinker with a known volume is used. The sinker is initially tared in air and then weighed in the liquid whose density is to be determined. The difference in weight results in the buoyancy from which the density is calculated by the firmware.

Note
- The hanger opening for weighing below the balance can be used for this purpose.
- When working with the optional density kit, observe the information in the supplied instructions.

Select in the application-specific settings as **Method [Liquid]**.

The activated **[Temp.AL]** function key and information field with the same name are not required for this density determination method. This function key can be used to enter the current ambient temperature. This is subsequently printed together with the protocols showing the temperature at which the density was determined.

Activate the appropriate function keys and information fields.

- **Start**
 → Activate function keys.
- **Vol.Sinker**
- **Temp.AL**
The result of the density determination can be printed with the \(\text{[\(\text{\textbullet}\)]}\) key. The result is stored up to completion of the next density determination with the same method and can be printed again as required.
- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press \(\text{[\(\text{\textbullet}\)]}\).
- Function keys are activated.

1 Press \(\text{[\(\text{\textbullet}\)]}\).
 \(\Rightarrow \) A window with application-dependent settings appears.

2 Beside **Method**, tap the associated button.
 \(\Rightarrow \) A selection window with methods appears.

3 Tap **Liquid**.

4 Tap **Vol.Sinker**.
 \(\Rightarrow \) A numeric input window appears.

5 Enter the sinker volume, e.g. 10.00000 cm\(^3\) and confirm with **OK**.

6 Tap **Start**.
 \(\Rightarrow \) The balance requests that the sinker is weighed in air.

7 Place the sinker on the balance and confirm with **OK**.
 When working with the optional density kit, observe the information in the supplied instructions.
 When working with the hanger opening, hang the sinker on the hanging device.
 \(\Rightarrow \) The balance is automatically tared.
 \(\Rightarrow \) The balance requests that the sinker is weighed in the liquid.

8 Pour the liquid into the beaker.
 The sinker must be immersed at least 1 cm in the liquid and no air bubbles must be present in the container.
 When working with the hanger opening, place the container with the liquid below the hanging device.
 \(\Rightarrow \) The buoyancy of the sinker appears with a negative sign at the bottom left corner of the window.

9 Tap **OK** to enter the weight.
 \(\Rightarrow \) The weighing result is stored.
 \(\Rightarrow \) The balance requests that the solid is weighed in the auxiliary liquid.

10 Place the solid on the balance.
 The sinker must be immersed at least 1 cm in the liquid and no air bubbles must be present in the container.
 When working with the hanger opening, place the container with the liquid below the hanging device.
 \(\Rightarrow \) Density determination is complete.

12.2.3 Determination of the density of pasty substances using a gamma sphere

Navigation: \(\text{[\(\text{\textbullet}\)]} > [\text{Density}] > [\text{\textbullet}] > \text{Method} > [\text{Pasty Subst.}] \)

For the determination of the density of pasty substances, a gamma sphere with a known volume is normally used. The pasty substance is initially tared without gamma sphere and then weighed with gamma sphere.
Select in the application-specific settings as **Method [Pasty Subst.]**.
The activated **Temp.AL** function key and information field with the same name are not required for this density determination method. This function key can be used to enter the current ambient temperature. This is subsequently printed together with the protocols showing the temperature at which the density was determined.
Activate the appropriate function keys and information fields.
Start – Activate function keys.

Vol.Gamma

Temp.AL

The result of the density determination can be printed with the [] key. The result is stored up to completion of the next density determination with the same method and can be printed again as required.

- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [].
- Function keys are activated.

1 Press [].
 ⇒ A window with application-dependent settings appears.
2 Beside Method, tap the associated button.
 ⇒ A selection window with methods appears.
3 Tap [Pasty Subst.].
4 Tap [Vol.Gamma].
 ⇒ A numeric input window appears.
5 Enter the gamma sphere volume, e.g. 10.00000 cm3 and confirm with [OK].
6 Tap [Start].
 ⇒ The balance requests that the sample is weighed.
7 Place the sample on the balance (without gamma sphere) and confirm with [OK].
 ⇒ The balance is automatically tared.
 ⇒ The sample weight appears at the bottom left corner of the window.
8 Immerse the gamma sphere in the liquid.
 ⇒ The weight of the substance displaced by the gamma sphere appears at the bottom left corner of the window.
9 Tap [OK] to enter the weight.
 ⇒ The weight is stored.
 ⇒ The balance determines the density of the pasty substance.
 ⇒ The result window with compensated and/or uncompensated value appears.
 ⇒ Density determination is complete.

12.2.4 Determination of the density of liquids using a pycnometer

Navigation: [] > [Density] > [] > Method > [Pycnometer]

For the determination of the density of liquids, a pycnometer is frequently used, i.e. a glass beaker with a known volume and weight. The liquid is filled into the pycnometer and weighed.

Select in the application-specific settings as Method [Pycnometer].

The activated [Temp.AL] function key and information field with the same name are not required for this density determination method. This function key can be used to enter the current ambient temperature. This is subsequently printed together with the protocols showing the temperature at which the density was determined.

Activate the appropriate function keys and information fields.
Start – Activate function keys.

Wgt. Pycno

Vol.Pycno

Temp.AL

The result of the density determination can be printed with the [] key. The result is stored up to completion of the next density determination with the same method and can be printed again as required.

- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [].
- Function keys are activated.

1 Press [].
 ⇒ A window with application-dependent settings appears.

2 Beside Method, tap the associated button.
 ⇒ A selection window with methods appears.

3 Tap [Pycnometer].

4 Tap [Wgt. Pycno].
 ⇒ A numeric input window appears.

5 Enter the pycnometer weight, e.g. 43.83 g and confirm with [OK].

6 Tap [Vol.Pycno].
 ⇒ A numeric input window appears.

7 Enter the pycnometer volume, e.g. 50.331 cm3 and confirm with [OK].

8 Tap [Start].
 ⇒ The balance requests that the filled pycnometer is placed on the balance.
 ⇒ The pycnometer weight appears with a negative sign at the bottom left corner of the window.

9 Place the filled pycnometer on the balance and confirm with [OK].
 ⇒ The net weight of the sample appears at the bottom left corner of the window.

10 Tap [OK] to enter the weight.
 ⇒ The weight is stored.
 ⇒ The balance determines the density of the liquid.
 ⇒ The result window with compensated and/or uncompensated value appears.

⇒ Density determination is complete.

12.2.5 Determination of the density of porous solids

Navigation: [] > [Density] > [] > Method > [Solid porous]

For the determination of the density of porous solids, the solid is initially weighed in air. In contrast to non-porous solids, an additional oil bath is required to close the pores in the solid before being weighed in the auxiliary liquid.

Note
- The hanger opening for weighing below the balance can be used for this purpose.
- When working with the optional density kit, observe the information in the supplied instructions.

Select in the application-specific settings as Method [Solid porous]. Define the required auxiliary liquid, e.g. [Water].

If an auxiliary liquid other than water or ethanol is used, activate the [Density AL] function key and the information field with the same name. Enter the density of the auxiliary liquid at the current temperature by pressing the [Density AL] function key (in g/cm3, max. 5 decimal places). This is required as density...
Density Application 165

Analytical Balances

Tables are stored in the balance only for water and ethanol. The entered value is displayed in the information field with the same name. The activated [Temp.AL] function key and information with the same name are not required for density determination with an auxiliary liquid other than water and ethanol. This function key can be used to enter the current ambient temperature. This is subsequently also printed on the protocols and shows the temperature at which the density was determined.

Activate the appropriate function keys and information fields.

- **Start** – Activate function keys.
- **Temp.AL**
- **Density AL**

The result of the density determination can be printed with the [Start] key. The result is stored up to completion of the next density determination with the same method and can be printed again as required.

- A printer is connected and activated as an output device in the peripheral device settings.
 - To print out the settings, press [Start].
- Function keys are activated.

1 Press [Start].

⇔ A window with application-dependent settings appears.

2 Beside **Method**, tap the associated button.

⇔ A selection window with methods appears.

3 Tap [Solid].

4 Beside **Aux. Liquid**, tap the associated button.

⇔ A selection window appears.

5 Tap, e.g. [Water].

6 Tap [Temp.AL].

⇔ A numeric input window appears.

7 Enter the value (10 °C to 30 °C) and confirm with [OK].

 For water and ethanol, density tables for the temperature range 10 °C to 30 °C are stored in the balance.

8 Tap [Start].

⇔ The balance is automatically tared.

⇔ The balance requests that the solid is weighed in air.

9 Place the solid on the balance.

 When working with the optional density kit, observe the information in the supplied instructions.

 When working with the hanger opening, hang the solid on the hanging device.

⇔ The weight of the solid appears at the bottom left corner of the window.

10 Tap [OK] to enter the weight.

⇔ The weight is stored.

⇔ The balance requests that the solid is briefly immersed in the oil bath and placed on the balance again.

11 Immerse the solid in the oil bath.

12 Place the solid in the same position again.

⇔ The weight of the solid appears at the bottom left corner of the window.
13 Tap [OK] to enter the weight.
 ➔ The weight is stored.
 ➔ The balance requests that the solid wetted with oil is immersed in the auxiliary liquid.
 The solid must be immersed at least 1 cm in the liquid and no air bubbles must be present in the
 container.
 When working with the hanger opening, the container with the auxiliary liquid must be placed below
 the hanging device.
 ➔ The weight of the solid appears at the bottom left corner of the window.
14 Tap [OK] to enter the weight.
 ➔ The balance determines the density of the solid.
 ➔ The result window with compensated and/or uncompensated value appears.
 ➔ Density determination is complete.

12.2.6 Example protocol of a density determination

The detail of a protocol depends on the selected protocol settings. Only application-specific information is
shown in the example printout.

The result protocol can be printed by pressing the [Print] key with the result window.

Note
The result remains stored up to completion of the next density determination. The result can be printed again
by pressing the [Print] key. This may be necessary if a second copy of a protocol is required or if the printer
could not be used due to a lack of paper.

Example: Printout

```
------- Density --------
25.Jul 2014        14:51
Method             Solid
Liquid             Water
Density  AL
     ... ===============
Density uncomp.
             4.451 g/cm3
         ===============
Signature

........................
```

12.3 Using density statistics

Statistics can be provided for each density determination method. Stored are all results (max. 651500)
recorded in the statistics during density determination.

Initial settings
The statistics can be used by activating the statistics function and the following function keys.

See [Activation or deactivation of statistics > 154].
Note
If there are no values in the statistics, the [Result] and [CL Result] function keys are inactive and cannot be actuated.

Result
– Activate function keys.

CL Result

Entry of values for statistics
If the statistics function is activated, a request is made at the end of each density determination to enter the results in the statistics.

- The statistics function is activated.
 - Tap [Yes].
 ⇒ The results are entered in the statistics of the current method.
 ⇒ Copying of the results is confirmed on the display.

If the results are not to be entered in the statistics, press [No]. The results are retained until the next measurement, but are not copied to the statistics.

Statistics display and printing
The density determination method must be selected in order to display or print the associated statistics.

See [Selecting the density determination method 154].

Displayed in the statistics window are the values selected for recording statistics. The statistics protocol can be printed by pressing the [Print] key with the statistics window open.

- A printer is connected and activated as an output device in the peripheral device settings.
 - To print out the settings, press [Print].

Example: Printout

<table>
<thead>
<tr>
<th>Density</th>
<th>Method</th>
<th>Liquid</th>
<th>With Compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.Jul 2014</td>
<td>Solid</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>5</td>
<td>s</td>
<td>s.rel</td>
</tr>
<tr>
<td>x</td>
<td>5.5004</td>
<td>0.0942</td>
<td>1.71 %</td>
</tr>
<tr>
<td>s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With Compensation</td>
<td>5</td>
<td>5</td>
<td>1.72 %</td>
</tr>
<tr>
<td>x</td>
<td>5.5062</td>
<td>0.0944</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without Compensation</td>
<td>5</td>
<td>5</td>
<td>1.72 %</td>
</tr>
<tr>
<td>x</td>
<td>5.423</td>
<td>0.180</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>5.603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diff.</td>
<td>0.180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td>............</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Function keys are activated.

The density determination method is selected.

Values are present in the statistics.

1 Tap [Result].

⇒ The statistics window with compensated and/or uncompensated values appears.

⇒ Only displayed are the values selected for recording statistics.

2 Press [Log].

⇒ The statistics protocol is printed.

3 To exit the menu item, tap [OK].

Deleting statistics

To end a series of measurements, press the [CL Result] function key. This clears the associated statistics. For security reasons, a request is displayed, which must be confirmed before the statistics are cleared.

Note

The [CL Result] function key clears the statistics of the currently selected density determination method. The statistics of other methods are retained. Prior to clearing, it must be ensured that the density determination method, the statistics of which are to be cleared, is selected.

Function keys are activated.

The density determination method is selected.

Values are present in the statistics.

1 Tap [CL Result].

⇒ A confirmation window appears.

2 To clear the statistics, tap [Yes].

⇒ The statistics are cleared.

⇒ The function key is inactive and grayed.

12.4 Formulae used to calculate density

The Density application is based on the following formulae.

12.4.1 Formulae for determining the density of solids

With compensation for air density

\[
\rho = \frac{A}{A-B} \left(\rho_0 - \rho_L \right) + \rho_L
\]

\[
V = \alpha \frac{A-B}{\rho_0 - \rho_L}
\]

Without compensation for air density

\[
\rho = \frac{A \cdot \rho_0}{A-B}
\]

\[
V = \frac{A-B}{\rho_0}
\]

\[\rho\] = Sample density

\[A\] = Weight of the sample in air

\[B\] = Weight of the sample in the auxiliary liquid

\[V\] = Sample volume

\[\rho_0\] = Density of the auxiliary liquid

\[\rho_L\] = Air density (0.0012 g/cm\(^3\))

\[\alpha\] = Balance correction factor (0.99985), takes into account the buoyancy of the adjustment weight
12.4.2 Formulae for determining the density of liquids and pasty substances

With compensation for air density

\[\rho = \alpha \cdot \frac{P}{V_0} + \rho_L \]

Without compensation for air density

\[\rho = \frac{P}{V_0} \]

- \(\rho \) = Density of liquid or pasty substance
- \(P \) = Weight of displaced liquid or pasty substance
- \(V_0 \) = Sinker or gamma sphere volume
- \(\rho_L \) = Air density (0.0012 g/cm^3)
- \(\alpha \) = Balance correction factor (0.99985), takes into account the buoyancy of the adjustment weight

12.5 Density table for distilled water

<table>
<thead>
<tr>
<th>T/°C</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>0.99973</td>
<td>0.99972</td>
<td>0.99971</td>
<td>0.99970</td>
<td>0.99969</td>
<td>0.99968</td>
<td>0.99967</td>
<td>0.99966</td>
<td>0.99965</td>
<td>0.99964</td>
</tr>
<tr>
<td>11.0</td>
<td>0.99963</td>
<td>0.99962</td>
<td>0.99961</td>
<td>0.99960</td>
<td>0.99959</td>
<td>0.99958</td>
<td>0.99957</td>
<td>0.99956</td>
<td>0.99955</td>
<td>0.99954</td>
</tr>
<tr>
<td>12.0</td>
<td>0.99953</td>
<td>0.99951</td>
<td>0.99950</td>
<td>0.99949</td>
<td>0.99948</td>
<td>0.99947</td>
<td>0.99946</td>
<td>0.99944</td>
<td>0.99943</td>
<td>0.99942</td>
</tr>
<tr>
<td>13.0</td>
<td>0.99941</td>
<td>0.99939</td>
<td>0.99938</td>
<td>0.99937</td>
<td>0.99935</td>
<td>0.99934</td>
<td>0.99933</td>
<td>0.99931</td>
<td>0.99930</td>
<td>0.99929</td>
</tr>
<tr>
<td>14.0</td>
<td>0.99927</td>
<td>0.99926</td>
<td>0.99925</td>
<td>0.99923</td>
<td>0.99922</td>
<td>0.99920</td>
<td>0.99919</td>
<td>0.99917</td>
<td>0.99916</td>
<td>0.99914</td>
</tr>
<tr>
<td>15.0</td>
<td>0.99913</td>
<td>0.99911</td>
<td>0.99910</td>
<td>0.99908</td>
<td>0.99907</td>
<td>0.99905</td>
<td>0.99904</td>
<td>0.99902</td>
<td>0.99900</td>
<td>0.99899</td>
</tr>
<tr>
<td>16.0</td>
<td>0.99897</td>
<td>0.99896</td>
<td>0.99894</td>
<td>0.99892</td>
<td>0.99891</td>
<td>0.99889</td>
<td>0.99887</td>
<td>0.99885</td>
<td>0.99884</td>
<td>0.99882</td>
</tr>
<tr>
<td>17.0</td>
<td>0.99880</td>
<td>0.99879</td>
<td>0.99877</td>
<td>0.99875</td>
<td>0.99873</td>
<td>0.99871</td>
<td>0.99869</td>
<td>0.99868</td>
<td>0.99866</td>
<td>0.99864</td>
</tr>
<tr>
<td>18.0</td>
<td>0.99862</td>
<td>0.99860</td>
<td>0.99859</td>
<td>0.99857</td>
<td>0.99855</td>
<td>0.99853</td>
<td>0.99851</td>
<td>0.99849</td>
<td>0.99847</td>
<td>0.99845</td>
</tr>
<tr>
<td>19.0</td>
<td>0.99843</td>
<td>0.99841</td>
<td>0.99839</td>
<td>0.99837</td>
<td>0.99835</td>
<td>0.99833</td>
<td>0.99831</td>
<td>0.99829</td>
<td>0.99827</td>
<td>0.99825</td>
</tr>
<tr>
<td>20.0</td>
<td>0.99823</td>
<td>0.99821</td>
<td>0.99819</td>
<td>0.99817</td>
<td>0.99815</td>
<td>0.99813</td>
<td>0.99811</td>
<td>0.99808</td>
<td>0.99806</td>
<td>0.99804</td>
</tr>
<tr>
<td>21.0</td>
<td>0.99802</td>
<td>0.99800</td>
<td>0.99798</td>
<td>0.99795</td>
<td>0.99793</td>
<td>0.99791</td>
<td>0.99789</td>
<td>0.99786</td>
<td>0.99784</td>
<td>0.99782</td>
</tr>
<tr>
<td>22.0</td>
<td>0.99780</td>
<td>0.99777</td>
<td>0.99775</td>
<td>0.99773</td>
<td>0.99771</td>
<td>0.99768</td>
<td>0.99766</td>
<td>0.99764</td>
<td>0.99761</td>
<td>0.99759</td>
</tr>
<tr>
<td>23.0</td>
<td>0.99758</td>
<td>0.99754</td>
<td>0.99752</td>
<td>0.99749</td>
<td>0.99747</td>
<td>0.99744</td>
<td>0.99742</td>
<td>0.99740</td>
<td>0.99737</td>
<td>0.99735</td>
</tr>
<tr>
<td>24.0</td>
<td>0.99732</td>
<td>0.99730</td>
<td>0.99727</td>
<td>0.99725</td>
<td>0.99722</td>
<td>0.99720</td>
<td>0.99717</td>
<td>0.99715</td>
<td>0.99712</td>
<td>0.99710</td>
</tr>
<tr>
<td>25.0</td>
<td>0.99707</td>
<td>0.99704</td>
<td>0.99702</td>
<td>0.99699</td>
<td>0.99697</td>
<td>0.99694</td>
<td>0.99691</td>
<td>0.99689</td>
<td>0.99686</td>
<td>0.99684</td>
</tr>
<tr>
<td>26.0</td>
<td>0.99681</td>
<td>0.99678</td>
<td>0.99676</td>
<td>0.99673</td>
<td>0.99670</td>
<td>0.99668</td>
<td>0.99665</td>
<td>0.99662</td>
<td>0.99659</td>
<td>0.99657</td>
</tr>
<tr>
<td>27.0</td>
<td>0.99654</td>
<td>0.99651</td>
<td>0.99648</td>
<td>0.99646</td>
<td>0.99643</td>
<td>0.99640</td>
<td>0.99637</td>
<td>0.99634</td>
<td>0.99632</td>
<td>0.99629</td>
</tr>
<tr>
<td>28.0</td>
<td>0.99626</td>
<td>0.99623</td>
<td>0.99620</td>
<td>0.99617</td>
<td>0.99614</td>
<td>0.99612</td>
<td>0.99609</td>
<td>0.99606</td>
<td>0.99603</td>
<td>0.99600</td>
</tr>
<tr>
<td>29.0</td>
<td>0.99597</td>
<td>0.99594</td>
<td>0.99591</td>
<td>0.99588</td>
<td>0.99585</td>
<td>0.99582</td>
<td>0.99579</td>
<td>0.99576</td>
<td>0.99573</td>
<td>0.99570</td>
</tr>
<tr>
<td>30.0</td>
<td>0.99567</td>
<td>0.99564</td>
<td>0.99561</td>
<td>0.99558</td>
<td>0.99555</td>
<td>0.99552</td>
<td>0.99549</td>
<td>0.99546</td>
<td>0.99543</td>
<td>0.99540</td>
</tr>
</tbody>
</table>
12.6 Density table for ethanol

<table>
<thead>
<tr>
<th>T/°C</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>0.79784</td>
<td>0.79775</td>
<td>0.79767</td>
<td>0.79758</td>
<td>0.79750</td>
<td>0.79741</td>
<td>0.79733</td>
<td>0.79725</td>
<td>0.79716</td>
<td>0.79708</td>
</tr>
<tr>
<td>11.</td>
<td>0.79699</td>
<td>0.79691</td>
<td>0.79682</td>
<td>0.79674</td>
<td>0.79665</td>
<td>0.79657</td>
<td>0.79648</td>
<td>0.79640</td>
<td>0.79631</td>
<td>0.79623</td>
</tr>
<tr>
<td>12.</td>
<td>0.79614</td>
<td>0.79606</td>
<td>0.79598</td>
<td>0.79589</td>
<td>0.79581</td>
<td>0.79572</td>
<td>0.79564</td>
<td>0.79555</td>
<td>0.79547</td>
<td>0.79538</td>
</tr>
<tr>
<td>13.</td>
<td>0.79530</td>
<td>0.79521</td>
<td>0.79513</td>
<td>0.79504</td>
<td>0.79496</td>
<td>0.79487</td>
<td>0.79479</td>
<td>0.79470</td>
<td>0.79462</td>
<td>0.79453</td>
</tr>
<tr>
<td>14.</td>
<td>0.79445</td>
<td>0.79436</td>
<td>0.79428</td>
<td>0.79419</td>
<td>0.79411</td>
<td>0.79402</td>
<td>0.79394</td>
<td>0.79385</td>
<td>0.79377</td>
<td>0.79368</td>
</tr>
<tr>
<td>15.</td>
<td>0.79360</td>
<td>0.79352</td>
<td>0.79343</td>
<td>0.79335</td>
<td>0.79326</td>
<td>0.79318</td>
<td>0.79309</td>
<td>0.79301</td>
<td>0.79292</td>
<td>0.79284</td>
</tr>
<tr>
<td>16.</td>
<td>0.79275</td>
<td>0.79267</td>
<td>0.79258</td>
<td>0.79250</td>
<td>0.79241</td>
<td>0.79232</td>
<td>0.79224</td>
<td>0.79215</td>
<td>0.79207</td>
<td>0.79198</td>
</tr>
<tr>
<td>17.</td>
<td>0.79190</td>
<td>0.79181</td>
<td>0.79173</td>
<td>0.79164</td>
<td>0.79156</td>
<td>0.79147</td>
<td>0.79139</td>
<td>0.79130</td>
<td>0.79122</td>
<td>0.79113</td>
</tr>
<tr>
<td>18.</td>
<td>0.79105</td>
<td>0.79096</td>
<td>0.79088</td>
<td>0.79079</td>
<td>0.79071</td>
<td>0.79062</td>
<td>0.79054</td>
<td>0.79045</td>
<td>0.79037</td>
<td>0.79028</td>
</tr>
<tr>
<td>19.</td>
<td>0.79020</td>
<td>0.79011</td>
<td>0.79002</td>
<td>0.78994</td>
<td>0.78985</td>
<td>0.78977</td>
<td>0.78968</td>
<td>0.78960</td>
<td>0.78951</td>
<td>0.78943</td>
</tr>
<tr>
<td>20.</td>
<td>0.78934</td>
<td>0.78926</td>
<td>0.78917</td>
<td>0.78909</td>
<td>0.78900</td>
<td>0.78892</td>
<td>0.78883</td>
<td>0.78874</td>
<td>0.78866</td>
<td>0.78857</td>
</tr>
<tr>
<td>21.</td>
<td>0.78849</td>
<td>0.78840</td>
<td>0.78832</td>
<td>0.78823</td>
<td>0.78815</td>
<td>0.78806</td>
<td>0.78797</td>
<td>0.78789</td>
<td>0.78780</td>
<td>0.78772</td>
</tr>
<tr>
<td>22.</td>
<td>0.78763</td>
<td>0.78755</td>
<td>0.78746</td>
<td>0.78738</td>
<td>0.78729</td>
<td>0.78720</td>
<td>0.78712</td>
<td>0.78703</td>
<td>0.78695</td>
<td>0.78686</td>
</tr>
<tr>
<td>23.</td>
<td>0.78678</td>
<td>0.78669</td>
<td>0.78660</td>
<td>0.78652</td>
<td>0.78643</td>
<td>0.78635</td>
<td>0.78626</td>
<td>0.78618</td>
<td>0.78609</td>
<td>0.78600</td>
</tr>
<tr>
<td>24.</td>
<td>0.78592</td>
<td>0.78583</td>
<td>0.78575</td>
<td>0.78566</td>
<td>0.78558</td>
<td>0.78549</td>
<td>0.78540</td>
<td>0.78532</td>
<td>0.78523</td>
<td>0.78515</td>
</tr>
<tr>
<td>25.</td>
<td>0.78506</td>
<td>0.78497</td>
<td>0.78489</td>
<td>0.78480</td>
<td>0.78472</td>
<td>0.78463</td>
<td>0.78454</td>
<td>0.78446</td>
<td>0.78437</td>
<td>0.78429</td>
</tr>
<tr>
<td>26.</td>
<td>0.78420</td>
<td>0.78411</td>
<td>0.78403</td>
<td>0.78394</td>
<td>0.78386</td>
<td>0.78377</td>
<td>0.78368</td>
<td>0.78360</td>
<td>0.78351</td>
<td>0.78343</td>
</tr>
<tr>
<td>27.</td>
<td>0.78334</td>
<td>0.78325</td>
<td>0.78317</td>
<td>0.78308</td>
<td>0.78299</td>
<td>0.78291</td>
<td>0.78282</td>
<td>0.78274</td>
<td>0.78265</td>
<td>0.78256</td>
</tr>
<tr>
<td>28.</td>
<td>0.78248</td>
<td>0.78239</td>
<td>0.78230</td>
<td>0.78222</td>
<td>0.78213</td>
<td>0.78205</td>
<td>0.78196</td>
<td>0.78187</td>
<td>0.78179</td>
<td>0.78170</td>
</tr>
<tr>
<td>29.</td>
<td>0.78161</td>
<td>0.78153</td>
<td>0.78144</td>
<td>0.78136</td>
<td>0.78127</td>
<td>0.78118</td>
<td>0.78110</td>
<td>0.78101</td>
<td>0.78092</td>
<td>0.78084</td>
</tr>
<tr>
<td>30.</td>
<td>0.78075</td>
<td>0.78066</td>
<td>0.78058</td>
<td>0.78049</td>
<td>0.78040</td>
<td>0.78032</td>
<td>0.78023</td>
<td>0.78014</td>
<td>0.78006</td>
<td>0.77997</td>
</tr>
</tbody>
</table>
13 Statistics Application

Navigation: [Statistics] > [Statistics]

The application allows you to generate and evaluate statistics for a series of weighings. It can handle 1 to 999 values.

All application settings are saved under the active user profile.

The Statistics application has the same basic features as the Weighing application. However, it includes additional settings and functions for statistical data acquisition and evaluation of a series of weighings.

Only the settings and functions that differ from those of the Weighing application are described in detail below.

Selecting the application
1 Press [Statistics].
2 Tap the [Statistics] icon in the selection window.
 – The selected application is active.
 – Some of the specific function keys and data fields for statistics are activated by default (factory defaults).
 – The two function keys [Result] and [CL Result] are disabled and are therefore shown differently because there is no statistical data available at this point in time.
 – The balance is ready for weighing.

13.1 Settings for the Statistics application

Navigation: [Statistics] > [Statistics]

Several specific settings are available for statistics. You can use them to adapt the application to your needs.

Most of the setting options are the same as for the Weighing application. Only the settings that differ are described below.

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function Keys</td>
<td>Define which function keys for statistics are shown at the bottom of the display. These keys enable direct access to specific functions.</td>
<td>See [Specific function keys for using statistics 172]</td>
</tr>
<tr>
<td>Info Field</td>
<td>Define which information fields for statistics are displayed.</td>
<td>See [Specific information fields for statistics 172]</td>
</tr>
<tr>
<td>Autom. WeightEntry</td>
<td>Activates/deactivates automatic weight entry.</td>
<td>See [Specifications for automatic weight entry 173]</td>
</tr>
<tr>
<td>Protocol</td>
<td>Select data to be shown on the weighing protocol.</td>
<td>See [Specific protocol information for statistics 174]</td>
</tr>
<tr>
<td>Additive Weighing</td>
<td>Activates/deactivates the additive mode (series weighing with automatic taring).</td>
<td>See [Enable additive mode 176]</td>
</tr>
<tr>
<td>PlausibilityCheck</td>
<td>Define the limit values for plausible weighing results.</td>
<td>See [Define plausibility limits 177]</td>
</tr>
<tr>
<td>Tablet Feeder</td>
<td>Define the specifications for cooperation between the statistics function and the LV11 tablet feeder.</td>
<td>See [Settings for the LV11 tablet feeder 177]</td>
</tr>
</tbody>
</table>
13.1.1 Specific function keys for using statistics

Navigation: [Home] > [Statistics] > [Function Keys]

This menu item allows you to enable the specific function keys listed below for using statistics. All other function keys are the same as for the Weighing application.

The function keys are displayed in the application at the bottom of the display. The numbers define the sequence in the display.

- Activate or deactivate function keys by tapping.
- To redefine the sequence, all function keys must be deactivated and subsequently activated in the required sequence.

Application is activated.

1. Press [M+].
 - A window with application-dependent settings appears.
2. Tap **Function Keys** > [Define].
3. Select the **Function Keys** which you need.
 - The function key is automatically numbered.
4. Change the settings and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enters the current value.</td>
</tr>
<tr>
<td></td>
<td>Opens the results window.</td>
</tr>
<tr>
<td></td>
<td>Clears the results memory.</td>
</tr>
<tr>
<td></td>
<td>Deletes the last saved value.</td>
</tr>
<tr>
<td></td>
<td>Defines the desired nominal weight. This also serves as a reference for the tolerances.</td>
</tr>
<tr>
<td></td>
<td>Defines the accuracy (tolerance range) for weighing to a nominal weight.</td>
</tr>
<tr>
<td></td>
<td>Defines the maximum number of weighings in a series.</td>
</tr>
</tbody>
</table>

Factory setting: [M+], [Result] and [CL Result] activated, in this sequence.

13.1.2 Specific information fields for statistics

Navigation: [Home] > [Statistics] > [Info Field]

This menu item provides the information fields listed below for displaying statistical values. All other data fields are the same as for the Weighing application.

The information fields in the display provide constant information on, e.g. set values, measured results.

- Information fields can be activated or deactivated by tapping.
- To redefine the sequence, all information fields must be deactivated and then activated in the required sequence.

Application is activated.

1. Press [M+].
 - A window with application-dependent settings appears.
2 Tap Info Field > [Define].
3 Select the information fields that you need.
 ⇒ The information field is automatically numbered.
4 Change the settings and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Shows the number of weighings that have been made.</td>
</tr>
<tr>
<td>x</td>
<td>Shows the average weight of all weighings.</td>
</tr>
<tr>
<td>s</td>
<td>Shows the standard deviation as an absolute value.</td>
</tr>
<tr>
<td>s.rel</td>
<td>Shows the standard deviation as a percentage.</td>
</tr>
<tr>
<td>Sum</td>
<td>Shows the total weight of all individual weighings.</td>
</tr>
<tr>
<td>>T+</td>
<td>Shows the number of weighings outside the upper weight tolerance.</td>
</tr>
<tr>
<td><T-</td>
<td>Shows the number of weighings outside the lower weight tolerance.</td>
</tr>
<tr>
<td>Min</td>
<td>Shows the lowest measured weight of the current series.</td>
</tr>
<tr>
<td>Max</td>
<td>Shows the highest measured weight of the current series.</td>
</tr>
<tr>
<td>Diff.</td>
<td>Shows the difference between the lowest and the highest weights.</td>
</tr>
<tr>
<td>Nominal</td>
<td>This function key displays the nominal weight.</td>
</tr>
<tr>
<td>+Tol</td>
<td>This function key displays the entered tolerance for weighing-in to nominal weight.</td>
</tr>
<tr>
<td>-Tol</td>
<td>This function key displays the entered tolerance for weighing-in to nominal weight.</td>
</tr>
</tbody>
</table>

Factory setting: n, x and s activated, in this sequence.

13.1.3 Specifications for automatic weight entry

Navigation: [App] > [Statistics] > [] > Autom. WeightEntry

Here you define whether and under which conditions the balance should automatically enter stable weight values in the statistics. This saves you the effort of tapping the [M+] function key. The value is printed automatically.

When this function is activated [On], the criteria for automatic entry can be defined via the [Define] button.

1 Press [].
 ⇒ A window with application-dependent settings appears.
2 Beside Autom. WeightEntry, tap the associated button.
 ⇒ Autom. WeightEntry window appears.
3 Tap [On] > [Define].
4 Change the settings and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit</td>
<td>This value defines which limit must be exceeded for automatic entry.</td>
<td>User-defined</td>
</tr>
<tr>
<td>Delay Time</td>
<td>When the limit is exceeded, the Delay Time is started, and when it times out the value is captured and entered in the statistics or transferred over the interface.</td>
<td>User-defined (displayed in seconds)</td>
</tr>
</tbody>
</table>

13.1.4 Specific protocol information for statistics

Navigation: [Statistics] > [Protocol]

Here you define which data appears in the protocols. This large menu item is divided into three sub-menus. They enable you to make additional settings for the application. The rest of the available protocol data corresponds to the data for the Weighing application and is not described here.

The numbered data items are printed in the protocols. The numbers determine the sequence in the printout.

- Information can be activated or deactivated by tapping. The sequence of the keys is automatically updated.
- To redefine the sequence, all information must be deactivated and subsequently activated in the required sequence.
- Application is activated.

1 Press [Protocol].
 ⇒ A window with application-dependent settings appears.

2 Tap [Protocol] > [Define].
 ⇒ Protocol window appears.

3 Tap (e.g. [Header]) > [Define].

4 Select the information key which you need.
 ⇒ The information key is automatically numbered.

5 Confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

Note
The results and data can be printed out at any time.
- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [Protocol].

Header line of protocols

Use this sub-menu to define which data is printed in the protocol header (before the results).

The header is printed automatically for series weighings when the first weight value is entered in the statistics by tapping the [M+] function key.

However, the header can also be printed separately by tapping the [Header] function key.

Recording of single values

This submenu can be used to define the information to be reported for each individual result.

Tap the [M+] function key to enable automatic printing of single values during a series of weighings.

A single value can also be printed separately by pressing the [M+] key.

Recording of results

Here you can define which additional data is to be recorded in the results protocol.

The result protocol can be printed by pressing the [Print] key with the result window.

If a specific number of samples [Max n] is defined for a weighing series, the results protocol is automatically printed after the weight of the last sample has been entered in the statistics.

You can define the following parameters:
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
</table>
| **Header** | Define the information to be printed in the protocol header (before the results).
Plausibility = records the defined limit for the plausibility of weight values.
Max n = records the defined maximum number of weighings in the series.
Nom.,+Tol,-Tol = records the defined nominal weight and the defined plus and minus tolerances. | Appl. Name* | Title 1 | Title 2 | Date/Time* | User | Balance Type | SNR | Balance ID | Levelcontrol | ID1 | ID2 | ID3 | ID4 | Plausibility | Max n | Nom.,+Tol,-Tol | MW-Method | Signature | Blank Line | Dash Line | 3 Blank Lines |
| **Single value** | Define the information to be recorded for each single result. | Header | Levelcontrol | ID1 | ID2 | ID3 | ID4 | Plausibility | Max n | Nom.,+Tol,-Tol | MW-Method | Tare | Net* | Gross | Info Unit | Blank Line | Dash Line | 3 Blank Lines |
Define which statistical data is to be recorded.

Result

- \(>\text{Tol}+,<\text{Tol}^- \) = records the number of weighings that are outside the tolerance range.
- \(n \) = records the number of weighed samples.
- \(x \) = records the average weight of the total number of samples. The value is recorded with the current display unit. The resolution of the recorded value is ten times higher than the resolution of the measured value with the highest resolution in the series.

Note

- The value \(s \) or \(s_{\text{rel}} \) are only recorded if there are at least three values in the statistics. Otherwise a dash is shown instead of a value.
- \(s \) = records the standard deviation as an absolute value. The value is recorded with the current display unit. The resolution of the recorded value is ten times higher than the resolution of the measured value with the highest resolution in the series.
- \(s_{\text{rel}} \) = records the relative standard deviation within the series as a percentage. The value is always recorded with a resolution of two decimal places.
- \(\text{Min}, \text{Max}, \text{Diff} = \text{Max} \) = Records the highest measured weight of the current series. The number of decimal places and the unit are the same as those used to display the result when the measured value was entered.
- \(\text{Min} \) = records the lowest measured weight of the current series. The number of decimal places and the unit are the same as those used to display the result when the measured value was entered.
- \(\text{Diff} \) = records the difference between the highest and lowest measured weights in the current series. The value is recorded with the current display unit. The number of decimal places of the recorded value corresponds to the number of decimal places of the highest or lowest weight with the highest resolution.
- \(\text{Sum} \) = records the total weight of all saved individual weighings. The value is recorded with the current display unit. The number of decimal places corresponds to the number of decimal places of the measured value with the highest resolution in the series.

* Factory setting

13.1.5 Enable additive mode

Navigation: \(\text{[Stats]} \) > \(\text{[Statistics]} \) > \(\text{[A]} \) > Additive Weighing

You can use this menu item to enable or disable additive mode. When additive mode is activated, it is not necessary to remove the samples from the weighing pan during a series of weighings.

1. Press \(\text{[A]} \).
 - A window with application-dependent settings opens.
2. Tap the \(\text{[On]} \) button for Additive Weighing.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Additive mode is disabled.</td>
<td>None</td>
</tr>
</tbody>
</table>
Statistics Application

13.1.6 Define plausibility limits

Navigation: [Statistics] > PlausibilityCheck

Plausibility checking is a security precaution. It prevents the entry of incorrect values in the statistics. Here you can define the limit value (as percentage) for the plausibility of the weighing results.

Example

With a plausibility limit of 30%, all weight values that are within ±30% of the nominal or average value are regarded as plausible and are entered in the statistics. All other weight values are ignored and excluded from the statistics.

Note

When you have defined a nominal weight value and tolerance limits, make sure that the plausibility limit for the weight is greater than the selected tolerance limits. Otherwise values that are actually within tolerance may not be entered in the statistics.

See [Weighing out to a nominal value 180].

1. Press [On].
2. Beside PlausibilityCheck, tap the associated button.
3. Enter the value and confirm with [OK].

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlausibilityCheck</td>
<td>Define the plausibility limit for measured values. The percentage relates to the defined nominal value. If no nominal value is defined, the limit relates to the average of the already weighed out samples of a weighing series.</td>
<td>Any (30 %)*</td>
</tr>
</tbody>
</table>

* Factory setting

13.1.7 Settings for the LV11 tablet feeder

Navigation: [Statistics] > Tablet Feeder

If you use the METTLER TOLEDO LV11 tablet feeder, you can configure the settings for this peripheral device here.

Note

If you connect an LV11 to your balance, you have to configure the interface appropriately in the system settings.

See [Peripherals 57].

- **Tablet Feeder** is activated.

1. Press [On].
2. Beside Tablet Feeder, tap the associated button.
3. Tap [On] > [Define].
4. Change the settings and confirm with [OK].

You can define the following parameters:
Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed Rate</td>
<td>Defines the feed rate.</td>
<td>slow</td>
</tr>
</tbody>
</table>
| Discharge Feeder | Activates/deactivates the emptying function.
On = the feed tray of the LV1 is automatically emptied after weighing the last sample of a weighing series.
Off = no automatic emptying. | On | Off* |

* Factory setting

13.2 Working with the Statistics application

Navigation: [Menu] > [Statistics]

This section describes how to use the Statistics application. Among other things, you can determine a tare weight, change the resolution of the weighing result or work with identifications.

You are probably already familiar with these options from the Weighing application. They are therefore not described again here.

13.2.1 Capturing statistics from a weighing series

For optimal use of the statistical functions, you should have a printer connected to your balance. Otherwise we recommend that you enable the four statistical data fields that are the most important for your application (e.g. n, x, s and Sum).

- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [Menu].

Initial settings

To use statistics, you must enable at least the following three function keys:

- **M+** — Enable function keys.
- **Result**
- **CL Result**

We also recommend enabling the following two function keys: They allow you to delete incorrect values [CL Last] and to define the number of samples to be included in a series of weighings [Max n].

- **CL Last** — Enable additional function keys.
- **Max n**

Procedure

Series weighing

If the number of samples to be weighed out for a series is specified, tap the [Max n] function key and enter the number of samples (1 to 999). The series is terminated automatically after the last sample has been weighed out. The result window is opened and the result log is printed. This function key is only active when no measurement data is present in the statistics. If you enter 0 (zero) for [Max n], the series does not have a defined limit and you can weigh out a maximum of 999 samples.

When working with a weighing container, place the container on the balance and press the [T→] key to tare the balance.

Alternatively you can use the tare memory or the automatic taring function. These functions are described in the instructions for the Weighing application.
Note
If you start a weighing series with a user-defined weighing unit, the unit cannot be changed until the series of measurements is finished.

See [Defining free weighing units » 81].

- Function keys are activated.
- The balance is tared [\(\rightarrow \text{T} \leftarrow \)].

1 Tap [Max n].
 ⇒ A numeric input window appears.
2 Enter the number and confirm with [OK].
3 Load the first sample and tap the [M+] function key.
 ⇒ When the weight is stable (the dashes disappear), it is entered in the statistics.
 ⇒ The protocol header and the result (single value) of the current weighing are printed.
4 Remove the first sample.
 If the additive mode is activated, the sample can remain on the weighing pan. The balance is automatically tared after each weight is entered in the statistics.
5 Load further samples in succession. Confirm each weight with the [M+] function key (unnecessary if automatic weight entry is activated).
6 Remove the sample and tare the balance (unnecessary if additive mode is activated).
 ⇒ Each value is automatically recorded after being entered in the statistics.
 ⇒ After the last sample is weighed, the result window is automatically opened and printed.
 ⇒ The result window contains the results of a series of weighings. The information selected for result recording appears.
 If the result window consists of several screen pages, paging between the individual pages can take place with the two arrow keys.
7 Tap [CL Result] to end measurement and clear the memory for the next series.
 ⇒ A confirmation window appears.
8 To delete the statistics, confirm with [OK].
 ⇒ The statistics are deleted.
 ⇒ The function key is inactive and grayed.

Sample weighing

- Function keys are activated.
- The balance is tared [\(\rightarrow \text{T} \leftarrow \)].
1 Load the sample and tap the [M+] function key.
 ⇒ When the weight is stable (the dashes disappear), it is entered in the statistics.
 ⇒ The protocol header and the result (single value) of the current weighing are printed.
2 Remove the sample.
3 Tap [Result].
 ⇒ The result window appears.
 If the result window consists of several screen pages, paging between the individual pages can take place with the two arrow keys.
4 Press [Print] to print the result protocol.
5 Tap [OK] to exit the result window.
6 Tap [CL Result] to end measurement and clear the memory for the next series.
 ⇒ A confirmation window appears.
7 To delete the statistics, confirm with [OK].
 ⇒ The statistics are deleted.
 ⇒ The function key is inactive and grayed.
Note
An error message is displayed if you tap the [M+] function key but no weight change has occurred. This prevents you from accidentally acquiring the sample twice.

If you have mistakenly weighed out an incorrect amount and stored the weighing result, you can use the [CL Last] function key to cancel the last value. It is only available if values are already present in the memory; otherwise the key is grayed out and cannot be actuated. The key is disabled after a value is deleted and is not enabled again until the next value has been entered in the statistics.

If a weight value is outside the plausibility limit, a corresponding error message is displayed after the [M+] key is tapped. The value cannot be entered in the statistics. No error message is displayed if automatic weight entry is activated. However, the value is not entered in the statistics and it does not appear in the statistics protocol.

13.2.2 Weighing out to a nominal value

The Statistics application provides additional functions that simplify weighing out samples to a defined nominal value. You can use these functions for individual weighings or for series weighings with statistics.

Initial settings

To enter the nominal weight and the associated tolerance range, enable the function keys listed below. Also enable the data fields with the same names so that the defined values will be displayed.

- Nominal
- +Tolerance
- -Tolerance

Procedure

Important

Ensure that the plausibility limit is greater than the defined tolerance values. Weights that are within the tolerance range but greater than the plausibility limit cannot be entered in the statistics. If necessary, change the plausibility limit for the weight values.

See [Define plausibility limits 177].

Note

The function keys for entering the nominal weight and the tolerance range are disabled if values are already present in the statistics. In this case, you must clear the statistics with the [CL Last] function key before you can define the nominal weight and the tolerance range.

- Function keys are activated.
- Statistics are deleted.

1 Tap the [Nominal] function key.
 ⇒ A numeric input window appears.

2 Enter the required value.
 - If a weight corresponding to the nominal weight is already on the balance, it can be directly taken over by tapping the button with the balance icon.
 - Check the weighing unit to the right of the nominal weight.
 - A selection of available units can be displayed by tapping the weighing unit.

Note

Units are not converted automatically. When a value is entered in a unit, it is retained, even when the unit is changed.

3 Confirm with [OK] to activate the nominal weight.

4 Tap the [+Tolerance] and/or [-Tolerance] function key.
 ⇒ A numeric input window appears.
5 Enter the required value. Both tolerances are set to 2.5% by default. Instead of a percentage, an absolute tolerance can be entered in any unit, e.g. [g].

6 Confirm with [OK] to activate the tolerance.

Note
Samples outside the tolerance range are specifically marked with >T+ or <T- when single values are recorded.

⇒ The SmartTrac graphic weighing-in aid with tolerance marks to facilitate weighing-in to the nominal weight appears.
⇒ Samples can be roughly weighed until the lower tolerance limit is reached and subsequent additions made up to the nominal weight.

13.2.3 Example protocol with statistical values

The detail of a protocol depends on the selected protocol settings. Only application-specific information is shown in the example printout.

Important information for the interpretation of recorded results

The x and s values are calculated results that are shown with higher resolution than the individual measured values. The significance of the last decimal place cannot be assured with a relatively small measurement series (fewer than 10 or so measured values) with small weight differences.

Example: Printout

| -------- Statistics -------- |
| 25. Jul 2014 16:40 |
| WeighBridge SNR 1234567890 |
| Terminal SNR 1234567891 |
| Balance ID Lab A/1 |
| Balance is levelled |
| Plausibility 30 % |
| Nominal 24.20 g |
| +Tol 2.5 % |
| -Tol 2.5 % |
| 1 24.21 g |
| 2 24.67 g |
| 3>T 24.91 g |
| 4 24.18 g |
| n 4 |
| x 24.493 g |
| s 0.357 g |
| s. rel 1.46 % |
| Min. 24.18 g |
| Max. 24.91 g |
| Diff 0.73 g |
| Sum 97.97 g |

Signature

........................

13.2.4 Formulas used for the calculation of statistical values

Calculation of mean value and standard deviation

Notation

\(x_i \) = Individual measured value of a series of \(n \) measured values \(i = 1 \ldots n \)

\(\bar{x} \) = Mean value and \(s \) standard deviation of these measured values

The mean value is given by:

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}
\]

The commonly used formula for the calculation of the standard deviation, \(s \)

\[
s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \quad (2)
\]

(2) not suitable for numerical calculation, since in measurements where deviations between single values are very small, the square of the difference (between the single value and mean value) can lead to cancellation. In addition, when using this formula, each single measured value must be stored before the standard deviation can be finally determined.

The following formula is mathematically equivalent, but much more stable numerically. It can be derived by appropriate transformation from (1) and (2):

\[
s = \sqrt{\frac{1}{n-1} \left[\sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 \right]} \]

For the calculation of the mean value and standard deviation, only \(n \), \(\sum x \) and \(\sum x^2 \) need to be stored for the use of this formula.

Standard deviation

The numerical stability can be further improved by measured value scaling.

With \(\Delta x = x - x_0 \) whereby \(x_0 \) (depending on the application) is either the first measured value of a series of measurements or the nominal value of a series of measurements, the following is obtained:

\[
s = \sqrt{\frac{1}{n-1} \left[\sum_{i=1}^{n} (\Delta x_i)^2 - \frac{1}{n} \left(\sum_{i=1}^{n} \Delta x_i \right)^2 \right]} \]

Mean value

The mean value is calculated accordingly:

\[
\bar{x} = x_0 + \frac{1}{n} \sum_{i=1}^{n} \Delta x_i
\]

Relative standard deviation

The relative standard deviation can be calculated using the formula:

\[
s_{\text{rel}} = \frac{s}{\bar{x}} \times 100 \quad \text{percent}
\]

Number of digits in the results

The mean and standard deviation are always displayed and printed with one decimal place more than the corresponding single measured values. To be noted for interpretation of the results is that this additional decimal place has no significance for small series of measurements (less than about 10 measured values).

This applies similarly to percentages (e.g. relative standard deviation), which always has two decimal places (e.g. 13.45 percent). The significance of the decimal places depends similarly on the magnitude of the original values!
14 Formulation Application

Navigation: [Home] > [Formulation]

The Formulation application can be used for weighing in components that are to be combined in a specific ratio. Databases are available for permanently storing all relevant parameters for formulae and components. The selected formula is processed automatically in the formulation operation and the balance weighs in all components step by step. Naturally, it is also possible to “free formulate” without using formulae from the database. The result can be printed in detail at the end of a formulation.

The majority of application settings are saved under the active user profile.

The component and formulation databases are independent of the user profile; there is only one database for all users.

Only the settings and functions that differ from those of the Weighing application are described in detail below.

Selecting the application

1. Press [Home].
2. Tap [Formulation].
 - The selected application is active.
 - Some of the specific formulation function keys and information fields are activated by default (factory defaults).
 - Both [Result] and [CL Result] function keys are inactive and therefore grayed out as no formulation is currently active.
 - The balance is ready for formulation.

14.1 Formulation application settings

Navigation: [Home] > [Formulation] > [Home]

Different specific formulation settings are available. You can use them to adapt the application to your needs. In this application, the Info Unit is not available.

Most of the setting options are the same as for the Weighing application. Only the settings that differ are described below.

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipe</td>
<td>Definition of formulations.</td>
<td>See [Definition and activation of formulations 190]</td>
</tr>
<tr>
<td>Component</td>
<td>Definition of components.</td>
<td>See [Definition of components 189]</td>
</tr>
<tr>
<td>Autom. Zeroing</td>
<td>Activates/deactivates automatic zeroing.</td>
<td>See [Activation or deactivation of automatic zeroing 184]</td>
</tr>
<tr>
<td>Function Keys</td>
<td>Defines the formulation function keys that appear at the bottom of the display. These keys enable direct access to specific functions.</td>
<td>See [Specific function keys for formulation 184]</td>
</tr>
<tr>
<td>Info Field</td>
<td>Defines the formulation information fields to be displayed.</td>
<td>See [Specific information fields for formulation 185]</td>
</tr>
<tr>
<td>Protocol</td>
<td>Selects data to be shown in the weighing protocols.</td>
<td>See [Specific protocol information for formulation 186]</td>
</tr>
</tbody>
</table>
Identification | Defines identifications. | **See** [Specific identifications for formulation \(\Rightarrow 188\)]
---|---|---
Smart & ErgoSens | Programs both terminal SmartSens sensors. Up to two external ErgoSens (optional) can be assigned a function in this menu. | **See** [Specific SmartSens and ErgoSens settings for formulation \(\Rightarrow 188\)]

14.1.1 Activation or deactivation of automatic zeroing

Navigation: \(\Rightarrow\) [Formulation] \(\Rightarrow\) [Autom. Zeroing]

This menu item can be used to define whether the display is automatically reset to zero after removal of the tare container.

1. Press the \(\Rightarrow\) key.
 - A window with application-dependent settings opens.
3. Activate or deactivate **Autom. Zeroing** and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Activates automatic zeroing. When the container is removed after taring the weighing container and weighing-in a component, the display is automatically reset to zero.</td>
<td>None</td>
</tr>
<tr>
<td>Off</td>
<td>Deactivates automatic zeroing.</td>
<td>None</td>
</tr>
</tbody>
</table>

Factory setting: [Off].

14.1.2 Specific function keys for formulation

Navigation: \(\Rightarrow\) [Formulation] \(\Rightarrow\) [Function Keys]

This menu item can be used to activate the following specific formulation function keys. All other function keys are the same as for the **Weighing** application.

- Activate or deactivate function keys by tapping.
- To redefine the sequence, all function keys must be deactivated and subsequently activated in the required sequence.
- Application is activated.

1. Press \(\Rightarrow\).
 - A window with application-dependent settings appears.
2. Tap **Function Keys** \(\Rightarrow\) [Define].
3. Select the **Function Keys** which you need.
 - The function key is automatically numbered.
4. Change the settings and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Rightarrow) M+</td>
<td>Stores the net weight of a weighed component and resets the weight display to zero.</td>
</tr>
<tr>
<td>(\Rightarrow) Result</td>
<td>Opens the results window.</td>
</tr>
<tr>
<td>(\Rightarrow) CL Result</td>
<td>Clears the results memory.</td>
</tr>
<tr>
<td>(\Rightarrow) Recipe</td>
<td>Opens the recipe database for selecting a recipe.</td>
</tr>
</tbody>
</table>
Abs/Diff Switches the weight display between the weighed quantity (Abs = absolute) and the residual quantity to be weighed, until the nominal weight (Diff = difference) is reached.

Nominal Defines the desired nominal weight. This also serves as a reference for the tolerances.

CompDB Opens the component database for selecting a component.

+Tol Defines the accuracy (tolerance range) for weighing to a nominal weight.

-Tol Defines the accuracy (tolerance range) for weighing to a nominal weight.

Factory setting: [M+], [Result], [CL Result], [ID] and [Nominal] activated, in this sequence.

14.1.3 Specific information fields for formulation

Navigation: [Formulation] > Info Field

This menu item contains the following formulation information fields. All other data fields are the same as for the Weighing application.

The information fields in the display provide constant information on, e.g. set values, measured results.

- Information fields can be activated or deactivated by tapping.
- To redefine the sequence, all information fields must be deactivated and then activated in the required sequence.

Application is activated.

1 Press [Enter].

⇒ A window with application-dependent settings appears.

2 Tap Info Field > [Define].

3 Select the information fields that you need.

⇒ The information field is automatically numbered.

4 Change the settings and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. Weight</td>
<td>Displays the current component weight.</td>
</tr>
<tr>
<td>Nominal</td>
<td>This function key displays the nominal weight.</td>
</tr>
<tr>
<td>Net Tot</td>
<td>Displays the total net weight of all weighed components.</td>
</tr>
<tr>
<td>≥T+</td>
<td>Shows the number of weighings outside the upper weight tolerance.</td>
</tr>
<tr>
<td><T-</td>
<td>Shows the number of weighings outside the lower weight tolerance.</td>
</tr>
<tr>
<td>+Tol</td>
<td>This function key displays the entered tolerance for weighing-in to nominal weight.</td>
</tr>
<tr>
<td>-Tol</td>
<td>This function key displays the entered tolerance for weighing-in to nominal weight.</td>
</tr>
<tr>
<td>Comp. Counter</td>
<td>Displays the current component counter reading (consecutive number of current component).</td>
</tr>
<tr>
<td>Recipe Name</td>
<td>Shows the name of the current formulation.</td>
</tr>
<tr>
<td>Recipe ID</td>
<td>Displays the identification entered via the [ID] function key.</td>
</tr>
</tbody>
</table>

Note

The identification designations ID1 are set to the factory defaults, but can be changed.
Comp. Name	Displays the name of the current component.
Comp. ID | Displays the identification entered via the [ID] function key.
Note
The identification designations ID2 are set to the factory defaults, but can be changed.
Lot ID | Displays the identification entered via the [ID] function key.
Note
The identification designations ID3 are set to the factory defaults, but can be changed.
Additional ID | Displays the identification entered via the [ID] function key.
Note
The identification designations ID4 are set to the factory defaults, but can be changed.

Factory setting: Recipe ID, Tare, Gross and Nominal activated, in this sequence.

14.1.4 Specific protocol information for formulation

Navigation: [Home] > [Formulation] > [Recipe] > Protocol

Here you define which data appears in the protocols. This large menu item is divided into three sub-menus. They enable you to make additional settings for the application. The rest of the available protocol data corresponds to the data for the Weighing application and is not described here.

The numbered data items are printed in the protocols. The numbers determine the sequence in the printout.

- Information can be activated or deactivated by tapping. The sequence of the keys is automatically updated.
- To redefine the sequence, all information must be deactivated and subsequently activated in the required sequence.
 - Application is activated.

1. Press [M+].
 - A window with application-dependent settings appears.
2. Tap Protocol > [Define].
 - Protocol window appears.
3. Tap (e.g. Header) > [Define].
4. Select the information key which you need.
 - The information key is automatically numbered.
5. Confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

Note
The results and data can be printed out at any time.
- A printer is connected and activated as an output device in the peripheral device settings.
 - To print out the settings, press [Print].

Header line of protocols

Use this sub-menu to define which data is printed in the protocol header (before the results).

The header is printed automatically when the weight of the first component has been stored during formulation by tapping the [M+] function key.

Recording of single values

This submenu can be used to define the information to be reported for each individual result.

Single values are automatically printed during formulation by tapping the [M+] function key.

A single value can also be printed separately by pressing the [Print] key.
Recording of results
Here you can define which additional data is to be recorded in the results protocol.
The result protocol can be printed by pressing the [] button with the result window open or automatically after taking over the last component of a formulation.
You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>Define the information to be printed in the protocol header (before the results).</td>
<td>Appl. Name*</td>
</tr>
<tr>
<td>Single value</td>
<td>Define the information to be recorded for each single result.</td>
<td>Header</td>
</tr>
<tr>
<td>Result</td>
<td>Define which statistical data is to be recorded.</td>
<td>Appl. Name</td>
</tr>
</tbody>
</table>
14.1.5 Specific identifications for formulation

Navigation: [Formulation] > [Identification]

This menu item can be used to activate the 4 identifications available for formulation via the [ID] function key. Individual identifications can be deactivated or their designations replaced with specific texts (max. 20 characters). The entered designations also appear as information field designations and are printed in weighing protocols. The two headers for the weighing protocols can be defined here; these are printed in the weighing protocols.

Note

The [Recipe ID] and [Comp. ID] are not required for the automatic processing of predefined formulations. These are automatically taken over from the formulation or component database. Further IDs can be activated if additional designations are required for formulation.

For free formulation (without using the databases), the [Recipe ID] and [Comp. ID] can be activated to assign a designation to the formulations and components.

1 Press [ID].
 ⇒ A window with application-dependent settings appears.

2 Tap Identification > Define.
 ⇒ Identification window appears.

3 Settings can be changed by tapping the associated button.
 ⇒ An alphanumeric input window appears.

4 Enter the designation and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

Menu structure

<table>
<thead>
<tr>
<th>Main menu</th>
<th>Submenu</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title 1</td>
<td>T1</td>
<td>See [Definition of identifications and protocol headers ‒ 87]</td>
</tr>
<tr>
<td>Title 2</td>
<td>T2</td>
<td></td>
</tr>
<tr>
<td>ID1 Name</td>
<td>Recipe ID</td>
<td>See section Identifications</td>
</tr>
<tr>
<td>ID2 Name</td>
<td>Comp. ID</td>
<td></td>
</tr>
<tr>
<td>ID3 Name</td>
<td>Lot ID</td>
<td></td>
</tr>
<tr>
<td>ID4 Name</td>
<td>Additional ID</td>
<td></td>
</tr>
</tbody>
</table>

Identifications

The following designations are defined by default for the 4 identifications.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipe ID</td>
<td>Activates/deactivates the ID and designation (max. 20 characters).</td>
<td>Off</td>
</tr>
<tr>
<td>Comp. ID</td>
<td>Activates/deactivates the ID and designation (max. 20 characters).</td>
<td>Off*</td>
</tr>
<tr>
<td>Lot ID</td>
<td>Activates/deactivates the ID and designation (max. 20 characters).</td>
<td>Off*</td>
</tr>
<tr>
<td>Additional ID</td>
<td>Activates/deactivates the ID and designation (max. 20 characters).</td>
<td>Off*</td>
</tr>
</tbody>
</table>

* Factory setting

14.1.6 Specific SmartSens and ErgoSens settings for formulation

Navigation: [Formulation] > [Smart & ErgoSens]

Additional settings are available for the SmartSens and ErgoSens sensors.
Only the settings and functions that differ from those of the **Weighing** application are described in detail below.

Note
The settings [Recipe ID], [Comp. ID], [Lot ID] and [Additional ID] correspond to the identifications [ID1] ... [ID4], which are also available in the **Weighing** application.

When one of the functions is activated, the green F symbol (Function) lights up in the status bar below the respective sensor.

1. **Press [F]**.
 - A window with application-dependent settings appears.

2. **Tap Smart & ErgoSens > [Define]**.
 - A selection window appears.

3. **Select the required menu item (e.g. SmartSens left)**.
 - A selection window appears.

4. **Select the function and confirm with [OK]**.

Menu structure

<table>
<thead>
<tr>
<th>Main menu</th>
<th>Submenu</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartSens left</td>
<td>Off</td>
<td>Door</td>
</tr>
<tr>
<td>SmartSens right</td>
<td>Off</td>
<td>Door</td>
</tr>
<tr>
<td>ErgoSens 1 (Aux1)</td>
<td>Off</td>
<td>Door</td>
</tr>
<tr>
<td>ErgoSens 2 (Aux2)</td>
<td>Off</td>
<td>Door</td>
</tr>
</tbody>
</table>

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>Emulates the function key with the same name. Opens the result window.</td>
</tr>
<tr>
<td>M+</td>
<td>Emulates the function key with the same name. Takes over the current value.</td>
</tr>
<tr>
<td>OK</td>
<td>Emulates pressing of the button with the same name in the dialogs (however not in the menus) for confirmation of entries and actions.</td>
</tr>
</tbody>
</table>

Factory setting: SmartSens left and right configured for door operation (draft shield). Both ErgoSens deactivated, [Off].

14.2 Definition of components

Navigation: [Formulation] > [Component]

Each formulation consists of one or more components. The components must be defined prior to formulation. The balance contains a component database. This database can store up to 100 components. Each component consists of a name and identification (ID). The firmware checks the entries for plausibility. If a name or ID already used by another component is entered, an error message is displayed. This section describes the procedure for the definition of components.

Note
The component database is independent of the user profile; there is only one component database for all users.
For subsequently changing already defined components, see [Information on changing existing components and formulations 201].

The contents of the component database can be recorded at any time by pressing the [] button. The component names and numbers are printed.

- A printer is connected and activated as an output device in the peripheral device settings.
 - To print out the settings, press [].

1 Press [].
 ⇒ A window with application-dependent settings appears.

2 Tap Component > [Define].
 The arrow keys can be used to page between individual pages.
 or
 Tap the button [Go to] and enter the component number. All of the 100 components can be directly selected in this way.
 ⇒ The first page of the component database appears.
 The database contains a total of 20 pages with 5 components respectively.

3 Tap the components to be defined.

4 Beside Component Name, tap the associated button.
 ⇒ An alphanumeric input window appears.

5 Enter the designation and confirm with [OK].

6 Beside Comp. ID, tap the associated button.
 ⇒ An alphanumeric input window appears.

7 Enter the designation and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Name</td>
<td>Definition of a designation (max. 20 characters). Note: The current designation of the respective product can be used as a name.</td>
<td>Any</td>
</tr>
<tr>
<td>Comp. ID</td>
<td>Definition of an identification (max. 20 characters). Note: The ID is frequently scanned via a barcode reader for clear assignment of the components to the corresponding product.</td>
<td>Any</td>
</tr>
</tbody>
</table>

14.3 Definition and activation of formulations

Navigation: [] > [Formulation] > [] > Recipe

The balance contains a formulation database in which a maximum of 8 formulations with up to 12 components respectively can be stored. To fully define formulations, the respective components must be available in the component database. Each formulation is stored under a name. The definition of an identification (ID) is only required when work is carried out with Security Check or if the ID is to be included in the weighing protocols. The firmware checks the entries for plausibility. If a name or an ID already used by another formulation is entered, an error message is displayed. This section describes the procedure for the definition of formulations.

Note

The formulation database is independent of the user profile; there is only one formulation database for all users.

For subsequently changing already defined components, see [Information on changing existing components and formulations 201].
14.3.1 Formulation with fixed components (absolute nominal weights)

Navigation: [Formulation] > [Recipe] > [Define] > Recipe 2 > [Fix Component]

As long as the menu for the definition of a specific formulation is active, current formulation settings and data can be recorded at any time by pressing the [OK] key.

- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [Print].

Example: Printout

<table>
<thead>
<tr>
<th>Recipe 2</th>
<th>Fix Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Eraphtene</td>
</tr>
<tr>
<td>ID</td>
<td>ERA-1</td>
</tr>
<tr>
<td>Security Check</td>
<td>Off</td>
</tr>
<tr>
<td>Procedure</td>
<td>1 Tare</td>
</tr>
<tr>
<td>Component 1</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Renith 80 o/o</td>
</tr>
<tr>
<td>ID</td>
<td>R80</td>
</tr>
<tr>
<td>Component Weight</td>
<td>24.16 g</td>
</tr>
<tr>
<td>+Tolerance</td>
<td>2.50 %</td>
</tr>
<tr>
<td>-Tolerance</td>
<td>2.50 %</td>
</tr>
<tr>
<td>Component 2</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Lorine-BR</td>
</tr>
<tr>
<td>ID</td>
<td>LBR</td>
</tr>
<tr>
<td>Component Weight</td>
<td>16.45 g</td>
</tr>
<tr>
<td>+Tolerance</td>
<td>2.50 %</td>
</tr>
<tr>
<td>-Tolerance</td>
<td>2.50 %</td>
</tr>
<tr>
<td>Component 3</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Alcohol 90 o/o</td>
</tr>
<tr>
<td>ID</td>
<td>Alco 90</td>
</tr>
<tr>
<td>Component Weight</td>
<td>77.00 g</td>
</tr>
<tr>
<td>+Tolerance</td>
<td>2.50 %</td>
</tr>
<tr>
<td>-Tolerance</td>
<td>2.50 %</td>
</tr>
</tbody>
</table>

1 Press [Formulation].
- A window with application-dependent settings appears.

2 Tap Recipe > [Define].
- Formulation window appears.

3 Tap, e.g. Recipe 2 > [Off].
- Recipe 2 window appears.

4 Tap [Fix Component] > [Define].
- A window with application-dependent settings appears.

5 Beside Recipe Name, tap the associated button.
- An alphanumeric input window appears.

6 Enter the designation and confirm with [OK].

7 Beside Recipe ID, tap the associated button.
- An alphanumeric input window appears.

8 Enter the designation and confirm with [OK].

9 Beside Security Check, tap the associated button.

10 Activate/deactivate Security Check.

11 Beside Procedure, tap the associated button.

12 Select a process.
13 Change the menu page with the arrow keys.
14 Tap the button of the component to be included in the formulation.
 ⇒ A window is displayed in which the component can be activated.
15 Tap [Component] > [Define].
 ⇒ A selection window appears.
16 Beside Component Name or Comp. ID, tap the associated button.
 ⇒ A window with the component database appears.
17 Select the component by tapping.
18 Beside Component Weight, tap the associated button.
 ⇒ A numeric input window appears.
19 Enter the value and confirm with [OK].
20 Beside +Tolerance and/or -Tolerance tap the associated button.
 ⇒ A numeric input window appears.
21 Enter the value and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

Formulation parameters

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipe Name</td>
<td>Definition of a designation (max. 20 characters).</td>
<td>Any</td>
</tr>
<tr>
<td>Recipe ID</td>
<td>Definition of an identification (max. 20 characters).</td>
<td>Any</td>
</tr>
<tr>
<td>Security Check</td>
<td>With Security Check activated, the entry of a formulation ID (and component IDs) is required for each formulation. Formulation is only continued when these correspond to the formulation data. This ensures that work is carried out with the correct formulation and the correct components are weighed.</td>
<td>On</td>
</tr>
<tr>
<td>Procedure</td>
<td>1 Tare = all components are weighed in 1 container. Only a single taring is necessary at the start of formulation. n Tare = each component is weighed in its own container. Taring must be performed prior to each weighing-in operation.</td>
<td>1 Tare*</td>
</tr>
</tbody>
</table>

* Factory setting

Component parameters

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Name</td>
<td>Definition of components from the component database (max. 100 components).</td>
<td>Component database</td>
</tr>
<tr>
<td>Comp. ID</td>
<td>Definition of components from the component database (max. 100 components).</td>
<td>Component database</td>
</tr>
<tr>
<td>Component Weight</td>
<td>Definition of the required nominal weight.</td>
<td>Any (0.00 g)*</td>
</tr>
<tr>
<td>+Tolerance</td>
<td>Definition of accuracy (tolerances) for weighing-in to a nominal weight.</td>
<td>Any (2.50%)*</td>
</tr>
<tr>
<td>-Tolerance</td>
<td>Definition of accuracy (tolerances) for weighing-in to a nominal weight.</td>
<td>Any (2.50%)*</td>
</tr>
</tbody>
</table>

* Factory setting
14.3.2 Formulation with % components (relative nominal weights)

Navigation: [Form] > [Recipe] > [Define] > Recipe > [Recipe 3] > [% Component]

The definition of formulations with components with relative nominal weights differs only slightly from that for formulations with absolute components. Instead of an absolute nominal weight, a percentage nominal weight must be entered. This refers, depending on the selected Basis, to either the total formulation weight or the first component.

Note
For formulations with relative nominal component values, no formulation process can be selected as all components are weighed in 1 container.

As long as the menu for the definition of a specific formulation is active, current formulation settings and data can be recorded at any time by pressing the [] key.
- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [].

Example: Printout

<table>
<thead>
<tr>
<th>Recipe 3</th>
<th>% Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Iorex-MP</td>
</tr>
<tr>
<td>ID</td>
<td>IORX</td>
</tr>
<tr>
<td>Security Check</td>
<td>Off</td>
</tr>
<tr>
<td>Basis</td>
<td>Total weight</td>
</tr>
<tr>
<td>Component 1</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>UM Powder A</td>
</tr>
<tr>
<td>ID</td>
<td>UPA</td>
</tr>
<tr>
<td>Component %</td>
<td>22.6 %</td>
</tr>
<tr>
<td>+Tolerance</td>
<td>2.00 %</td>
</tr>
<tr>
<td>-Tolerance</td>
<td>2.00 %</td>
</tr>
<tr>
<td>Component 2</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>UM Powder B</td>
</tr>
<tr>
<td>ID</td>
<td>UPB</td>
</tr>
<tr>
<td>Component %</td>
<td>77.4 %</td>
</tr>
<tr>
<td>+Tolerance</td>
<td>3.00 %</td>
</tr>
<tr>
<td>-Tolerance</td>
<td>3.00 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recipe 4</th>
<th>% Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Meranit-411</td>
</tr>
<tr>
<td>ID</td>
<td>ME-411</td>
</tr>
<tr>
<td>Security Check</td>
<td>Off</td>
</tr>
<tr>
<td>Basis</td>
<td>1. Comp. Weight</td>
</tr>
<tr>
<td>Component 1</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>RF Subst. A</td>
</tr>
<tr>
<td>ID</td>
<td>RF-A</td>
</tr>
<tr>
<td>Component %</td>
<td>75.0 %</td>
</tr>
<tr>
<td>+Tolerance</td>
<td>2.50 %</td>
</tr>
<tr>
<td>-Tolerance</td>
<td>2.50 %</td>
</tr>
<tr>
<td>Component 2</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Sirine Liq. 16</td>
</tr>
<tr>
<td>ID</td>
<td>SI-LIQ</td>
</tr>
<tr>
<td>Component %</td>
<td>40.0 %</td>
</tr>
<tr>
<td>+Tolerance</td>
<td>1.50 %</td>
</tr>
<tr>
<td>-Tolerance</td>
<td>1.00 %</td>
</tr>
</tbody>
</table>

1 Press [].
 ⇒ A window with application-dependent settings appears.
2 Tap Recipe > [Define].
 ⇒ Formulation window appears.
3 Tap, e.g. Recipe 3 > [Off].
 ⇒ Recipe 3 window appears.
4 Tap [% Component] > [Define].
 ⇒ A window with application-dependent settings appears.
5 Beside Recipe Name, tap the associated button.
 ⇒ An alphanumeric input window appears.
6 Enter the designation and confirm with [OK].
7 Beside Recipe ID, tap the associated button.
 ⇒ An alphanumeric input window appears.
8 Enter the designation and confirm with [OK].
9 Beside Security Check, tap the associated button.
10 Activate/deactivate Security Check.
11 Beside Basis, tap the associated button.
12 Select a process.
13 Change the menu page with the arrow keys.
14 Tap the button of the component to be included in the formulation.
 ⇒ A window is displayed in which the component can be activated.
15 Tap [Component] > [Define].
 ⇒ A selection window appears.
16 Beside Component Name or Comp. ID, tap the associated button.
 ⇒ A window with the component database appears.
17 Select the component by tapping.
18 Beside Component %, tap the associated button.
 ⇒ A numeric input window appears.
19 Enter the value and confirm with [OK].
20 Beside +Tolerance and/or -Tolerance, tap the associated button.
 ⇒ A numeric input window appears.
21 Enter the value and confirm with [OK].
The arrow buttons can be used to page forward or back to a menu page.

Formulation parameters
You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipe Name</td>
<td>Definition of a designation (max. 20 characters).</td>
<td>Any</td>
</tr>
<tr>
<td>Recipe ID</td>
<td>Definition of an identification (max. 20 characters).</td>
<td>Any</td>
</tr>
<tr>
<td>Note</td>
<td>The definition of an identification (ID) is only required when work is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>carried out with Security Check or the ID is to be included in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weighing protocols.</td>
<td></td>
</tr>
<tr>
<td>Security Check</td>
<td>With Security Check activated, the entry of a formulation ID (and component</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>IDs) is required for each formulation. Formulation is only continued when</td>
<td></td>
</tr>
<tr>
<td></td>
<td>these correspond to the formulation data. This ensures that work is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>carried out with the correct formulation and the correct components are</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weighed.</td>
<td></td>
</tr>
</tbody>
</table>
Basis

Total weight = the nominal percentage of each component is based on the total weight (final weight) of the formulation. For formulation, the required final weight must be entered first. The nominal weights of the individual components are additionally automatically calculated in percent.

Note

For formulations with nominal percentages based on the total weight. The balance does not check whether the total percentage of all components is 100%. If this value is above or below 100%, the calculated percentages or the nominal weights to be weighed are automatically adjusted during the weighing operation, as illustrated in the following example:

Formulation data: nominal weight of first component: 80%, nominal weight of second component: 40%, final weight: 100 g.

Automatic calculation of the nominal weights to be weighed:
First component: 80%/120% • 100 g = 66.67 g
Second component: 40%/120% • 100 g = 33.33 g

1. Comp. Weight = for formulation, the nominal weight of the first component must be entered. This weight corresponds to the percentage defined in the formulation definition. The nominal weights of the further components are subsequently calculated automatically in relation to the first component.

Example of a formulation with two components
75% is defined for the first component. 40% is defined for the second component. For formulation, a nominal weight of 100 g is defined for the first component. The balance now calculates for the second component a nominal weight of 53.33 g (100 g/75% • 40% = 53.33 g).

* Factory setting

Component parameters

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Name</td>
<td>Definition of components from the component database (max. 100 components).</td>
<td>Component database</td>
</tr>
<tr>
<td>Comp. ID</td>
<td>Definition of components from the component database (max. 100 components).</td>
<td>Component database</td>
</tr>
<tr>
<td>Component %</td>
<td>Definition of the required nominal weight.</td>
<td>Any (0.00 g)*</td>
</tr>
<tr>
<td>+Tolerance</td>
<td>Definition of accuracy (tolerances) for weighing-in to a nominal weight.</td>
<td>Any (2.50%)*</td>
</tr>
<tr>
<td>-Tolerance</td>
<td>Definition of accuracy (tolerances) for weighing-in to a nominal weight.</td>
<td>Any (2.50%)*</td>
</tr>
</tbody>
</table>

* Factory setting

14.4 Working with the formulation application

Navigation: [Main Menu] > [Formulation]

This section describes the procedure for working with the application **Formulation** and recording the results.
14.4.1 Initial settings

A printer must be connected to the balance for recording formulations.
- A printer is connected and activated as an output device in the peripheral device settings.
 - To print out the settings, press [].

The most important information fields for the application must also be activated (e.g. Recipe Name, Comp. Name, Nominal and Comp. ID) for the automatic processing of formulations.

Depending on the type of formulation, further function keys must be activated.

For each formulation, at least the three following functions keys must be activated.

- M+ – Enable function keys.
- Result
- CL Result

For free formulation without using formulations from the database, the following function keys must also be activated. The respective values can be entered via these keys.

- Nominal – Enable function keys.
- +Tolerance
- -Tolerance

For free formulation, the ID function key must be activated. This allows specific designations to be assigned to the formulations and components. The activation of this function key can also be useful for automatic formulation processing for the assignment of one or two specific IDs to components in addition to those already predefined, e.g. a Lot ID.

- ID – Function key activation.

When working with components from the component database for free formulation, the CompDB function key must also be activated. This function key can be used to display components from the database.

- CompDB – Function key activation.

For the automatic processing of formulations from the database, the Recipe function key must be activated, which can also be used for formulation display.

- Recipe – Function key activation.

The Abs/Diff function key should also be activated. This allows the weight display to be switched between an already weighed quantity of a component and the remaining quantity to be weighed.

- Abs/Diff – Function key activation.

14.4.2 Free formulation (formulation without using the formulation database)

For using one or several components from the data base for free formulation, the [CompDB] function key must be activated. This function key can be used for directly accessing the component database and selecting the required component. In this case, no component ID needs to be entered; this is taken over directly from the database.
When working with a weighing container, place the container on the balance and press the \([\rightarrow T\leftarrow]\) key to tare the balance.

Note

The weight display can be switched between an already weighed component quantity and the remaining quantity to be weighed with the \([\text{Abs/Diff}]\) function key at any time.

If the remaining quantity display (difference) has been selected with the \([\text{Abs/Diff}]\) function key prior to entering the nominal weight, the nominal weight is displayed with a negative sign (weighing-in against zero).

- Function keys are activated.
- The balance is tared \([\rightarrow T\leftarrow]\).

1. Tap \([\text{ID}]\).

 or

 Tap \([\text{CompDB}]\).

 \(\Rightarrow\) An alphanumeric input window appears.

2. Enter the designation and confirm with \([\text{OK}]\).

3. To exit the menu without saving, tap \([\text{C}]\).

4. Tap the \([\text{Nominal}]\) function key.

 \(\Rightarrow\) A numeric input window appears.

5. Enter the required value for the first component.

 - If a weight corresponding to the nominal weight is already on the balance, it can be directly taken over by tapping the button with the balance icon.

 Check the weighing unit to the right of the nominal weight.

 A selection of available units can be displayed by tapping the weighing unit.

6. Confirm with \([\text{OK}]\) to activate the nominal weight.

7. Tap the \([+\text{Tolerance}]\) and/or \([-\text{Tolerance}]\) function key.

 \(\Rightarrow\) A numeric input window appears.

8. Enter the required value.

9. Confirm with \([\text{OK}]\) to activate the tolerance.

 Note

 Samples outside the tolerance range are specifically marked with \(>T+\) or \(<T-\) when single values are recorded.

 \(\Rightarrow\) The \text{SmartTrac} graphic weighing-in aid with tolerance marks to facilitate weighing-in to the nominal weight appears.

10. Weigh the first component.

11. When the nominal weight is reached or the weight is within the tolerances, tap the \([\text{M}+\text{]}\) function key to store the value.

 The weight must be previously verified again as the balance does not check whether the weighed value corresponds to the nominal weight.

 \(\Rightarrow\) The protocol header and the result (single value) of the current component are printed.

 \(\Rightarrow\) The balance is ready for weighing the second component.

12. If a new weighing container is used, the container with the first component must be removed and the balance zeroed \([\rightarrow 0\leftarrow]\). Place a new container on the balance and tare the balance \([\rightarrow T\leftarrow]\).

 If the second component is weighed in the same container, taring is unnecessary.

13. Define the nominal weight and tolerances.

14. Weigh the second component.

15. The result can be stored by tapping the \([\text{M}+\text{]}\) function key.

 \(\Rightarrow\) The determined single value is automatically recorded based on specific requirements.
16 Tap [Result]. Only available when values are stored, otherwise the key is grayed and cannot be actuated.
 → The result window appears.
 The information selected for result recording appears.
17 Press [P] to print the formulation.
18 Tap [OK] to exit the result window.
19 Tap [Cl Result] to end the formulation and delete the memory for the next formulation.
 → A confirmation window appears.
20 Confirm deletion of the formulation with [OK].
 → The formulation is deleted.
 → The function key is inactive and grayed.

Weighing further components
The procedure is the same as for the second component with the same or new weighing container.

14.4.3 Automatic formulation processing with "fixed components" (absolute nominal weights)

It is assumed that the relevant formulation has been defined and the required function keys and information fields are activated.

If the formulation definition requires that each component is weighed in its own container, a request is made prior to weighing the second component to place the new weighing container on the balance and press the [→T←] key. If the formulation definition requires that all components are weighed in the same container, taring does not need to be repeated. If automatic zeroing is activated, the display is automatically set to zero when the tare container is removed.

When working with a weighing container, place the container on the balance and press the [→T←] key to tare the balance.

Note
The user is responsible for ensuring that the weights are within the defined tolerances as the balance does not check this automatically. If an incorrect weight is taken over with the [M+] function key, the formulation result will also be incorrect.

Once a formulation is displayed, neither the identification of the formulation Recipe ID nor those of the components Comp. ID can be changed as these are part of the respective formulation or component definition in the databases.

If the [Recipe] function key is grayed, a new formulation cannot be selected as a formulation is being processed. In this case, tap the [Cl Result] function key to end the current formulation.

The weight display can be switched between an already weighed component quantity and the remaining quantity to be weighed with the [Abs/Diff] function key at any time.

- Function keys are activated.
- Formulations are defined.

1 Tap [Recipe].
 → A selection window appears.
2 Select a formulation from the formulation database by tapping. The formulation is processed immediately after selection.
 → An instruction window appears.
3 Place the weighing container on the balance and press the [→T←] key.
 → The balance is tared and ready for weighing the first component.
4 Weigh the first component.
 Refer to the graphic SmartTrac weighing-in aid with tolerance marks to facilitate weighing-in to the nominal weight. This display must be closely observed as the balance does not check for correspondence between the weighed and nominal weight.
5 When the nominal weight is reached or the weight is within the tolerances, tap the \([\text{M+}]\) function key to store the value.
 - The protocol header and the result (single value) of the current component are printed.
 - The balance is ready for weighing the second component.
 - The \([\text{Result}]\) function key is active and the result window can be opened. Information on the current formulation status appears.

6 Weigh the second component.
7 The result can be stored by tapping the \([\text{M+}]\) function key.
 - The determined single value is automatically recorded based on specific requirements.
 - When all formulation components have been weighed, the formulation result window is automatically displayed. The information selected for result recording appears. The formulation protocol is simultaneously completed.

8 Tap \([\text{OK}]\) to exit the result window.
9 Tap \([\text{CL Result}]\) to end the formulation and delete the memory for the next formulation.
 - A confirmation window appears.
10 Confirm deletion of the formulation with \([\text{OK}]\).
 - The formulation is deleted.
 - The function key is inactive and grayed.

Weighing further components
The procedure is the same as for the second component with the same or new weighing container.

Automatic formulation processing with "% components" (relative nominal weights)

Automatic formulation processing with % Component is basically the same as for formulations with Fix Component.

Depending on the component weighing method in the formulation definition, a request is initially made after selecting the formulation to enter the required final weight of the formulation or nominal weight of the first component.

The weight display can be switched between an already weighed component quantity and the remaining quantity to be weighed with the \([\text{Abs/Diff}]\) function key at any time.

- Function keys are activated.
- Formulations are defined.

1 Tap \([\text{Recipe}]\).
 - A selection window appears.

2 Select a formulation from the formulation database by tapping. The formulation is processed immediately after selection.
 - An instruction window appears.

3 Tap the \([\text{Enter}]\) button

4 Enter the required value for the first component.
 - If a weight corresponding to the nominal weight is already on the balance, it can be directly taken over by tapping the button with the balance icon.
 - Check the weighing unit to the right of the nominal weight.
 - A selection of available units can be displayed by tapping the weighing unit.

5 Confirm with \([\text{OK}]\) to activate the nominal weight.
 - An instruction window appears.

6 Place the weighing container on the balance and press the \([\text{T\leftarrow}]\) button.
 - The balance is tared and ready for weighing the first component.
 - The nominal weight is displayed in the Nominal information field. SmartTrac supports weighing-in to the nominal weight.
7 When the nominal weight is reached or the weight is within the tolerances, tap the [M+] function key to store the value.
 ⇒ The protocol header and the result (single value) of the current component are printed.
 ⇒ The balance is ready for weighing the second component.
 ⇒ The [Result] function key is active and the result window can be opened. Information on the current formulation status appears.
8 Weigh the second component.
9 The result can be stored by tapping the [M+] function key.
 ⇒ The determined single value is automatically recorded based on specific requirements.
 ⇒ When all formulation components have been weighed, the formulation result window is automatically displayed. The information selected for result recording appears. The formulation protocol is simultaneously completed.
10 Tap [OK] to exit the result window.
11 Tap [CL Result] to end the formulation and delete the memory for the next formulation.
 ⇒ A confirmation window appears.
12 Confirm deletion of the formulation with [OK].
 ⇒ The formulation is deleted.
 ⇒ The function key is inactive and grayed.

Weighing further components

The procedure is the same as for the second component with the same or new weighing container.

14.4.5 Sample protocol of a formulation

The detail of a protocol depends on the selected protocol settings. Only application-specific information is shown in the example printout.
Example: Printout

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>25. Jul 2014</td>
</tr>
<tr>
<td>Time</td>
<td>12:40</td>
</tr>
<tr>
<td>Recipe</td>
<td>Iorex-MP</td>
</tr>
<tr>
<td>Recipe ID</td>
<td>IORX</td>
</tr>
<tr>
<td>Num. of Comp.</td>
<td>2</td>
</tr>
<tr>
<td>Nominal Tot</td>
<td>84.30 g</td>
</tr>
<tr>
<td>Comp. ID</td>
<td>UPA</td>
</tr>
<tr>
<td>Comp. ID</td>
<td>UPB</td>
</tr>
<tr>
<td>Nominal 1</td>
<td>19.22 g</td>
</tr>
<tr>
<td>Nominal 2</td>
<td>65.08 g</td>
</tr>
<tr>
<td>Tol. 1</td>
<td>0.38 g</td>
</tr>
<tr>
<td>Tol. 2</td>
<td>1.95 g</td>
</tr>
<tr>
<td>N 1</td>
<td>19.24 g</td>
</tr>
<tr>
<td>N 2</td>
<td>65.21 g</td>
</tr>
<tr>
<td>Diff 1</td>
<td>0.02 g</td>
</tr>
<tr>
<td>Diff 2</td>
<td>0.13 g</td>
</tr>
<tr>
<td>Net Tot</td>
<td>84.45 g</td>
</tr>
</tbody>
</table>
| Signature |

14.5 Information on changing existing components and formulations

Stored formulation and component definitions can be changed. The following rules apply.

- While a formulation is being processed, neither stored formulations nor components can be changed.
- If a component which is part of a formulation is changed, the error message **This component cannot be changed. It is used by** is displayed. However, if components need to be changed, these must first be deactivated in all respective formulations. If components are to be included again in respective formulations after being changed, the components must be explicitly selected from the component database. Activate the components in the formulation and re-enter the nominal weights and tolerances. Subsequently change the formulation name and ID. This avoids confusion with previous formulations with the old definition.
- Components can be removed from the database by deleting their name or ID. However, this is only possible if the component is not part of a formulation.
- Formulations cannot be deleted from the database. Formulations that are no longer required must be deactivated. If a formulation is no longer required, it can only be removed from the database by overwriting it with a new formulation.
15 Differential Weighing Application

For Differential weighing, one or several samples are checked for weight variations. The first step consists of determining the initial weight of the sample (initial weighing). Certain sample components are subsequently removed or added. Processes, e.g. drying, centrifuging, filtering, incineration, evaporation and coating are also possible options. After processing, the sample is weighed again (residual weighing). The balance subsequently determines the difference between the two values.

The majority of application settings are saved under the active user profile.

Important

The specific data for differential weighing (definition and designation of, e.g. series and samples) and the results are stored in a database. This is irrespective of the user profile. There is only one database for all users.

Up to 99 series can be defined. Each series can consist of several samples (the balance can manage up to 500 samples in total). Each sample can be tared, initially weighed and residually weighed up to 3 times.

An automatic or manual procedure can also be defined for each series. With the automatic procedure, the user is guided through all steps of differential weighing for all samples (taring, initial weighing, residual weighing). With the manual procedure, the sample processing sequence can be selected by the user. Irrespective of the selected procedure, the balance continuously stores the current status for each sample. This prevents processes from being repeated by mistake. It is not possible to initially weigh the same sample twice for example.

Only the settings and functions that differ from those of the Weighing application are described in detail below.

Selecting the application

1. Press
2. Tap the Differential weighing icon in the selection window.
 - The selected application is active.
 - Some of the specific function keys and information fields for statistics are activated by default (factory defaults).
 - The balance is ready for weighing.

15.1 Settings for differential weighing application

Various specific differential weighing settings are available to suit specific application requirements.

All function keys are inactive as there are no specific settings for series and samples. Only a single series is predefined by default, however this does not contain any samples (Series 1 with 0 samples).

Most of the setting options are the same as for the Weighing application. Only the settings that differ are described below.

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>Defines new series, processes and deletes existing series, selects a series for differential weighing.</td>
<td>See [Defining, editing, deleting and selecting series 207]</td>
</tr>
</tbody>
</table>
15.1.1 Specific function keys for differential weighing

Navigation: [Main Menu] > [Differential weighing] > [Application] > Function Keys

This menu item can be used to activate the following specific function keys for differential weighing. All other function keys are the same as for the Weighing application.

The function keys are displayed in the application at the bottom of the display. The numbers define the sequence in the display.

- Activate or deactivate function keys by tapping.
- To redefine the sequence, all function keys must be deactivated and subsequently activated in the required sequence.

Application is activated.

1. Press [Function Keys].
 - A window with application-dependent settings appears.
2. Tap Function Keys > [Define].
3. Select the Function Keys which you need.
 - The function key is automatically numbered.
4. Change the settings and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Sample ID]</td>
<td>Defines a designation (max. 20 characters). Each sample of the current series can be assigned a designation.</td>
</tr>
<tr>
<td>![CL sample]</td>
<td>Clears all measured values of a sample and changes the sample designation back to the standard text. The sample itself remains in the series.</td>
</tr>
<tr>
<td>![Series]</td>
<td>Selects the series.</td>
</tr>
<tr>
<td>![Tare]</td>
<td>Tares the sample container in a separate operation.</td>
</tr>
<tr>
<td>![T & wgh. in]</td>
<td>Initiates taring of the sample container with subsequent initial weighing of the sample.</td>
</tr>
<tr>
<td>![Initial weighing]</td>
<td>Initially weighs a sample in a separate operation.</td>
</tr>
<tr>
<td>![Residual wgh]</td>
<td>Starts residual weighing of a sample.</td>
</tr>
</tbody>
</table>
15.1.2 Specific information fields for differential weighing

Navigation: [Main Menu] > [Differential weighing] > [Info Field]

This menu item contains the following information fields for differential weighing. All other data fields are the same as for the **Weighing** application.

The information fields in the display provide constant information on, e.g. set values, measured results.

- Information fields can be activated or deactivated by tapping.
- To redefine the sequence, all information fields must be deactivated and then activated in the required sequence.
- Application is activated.

1. Press [Menu].
 - A window with application-dependent settings appears.
2. Tap **Info Field** > [Define].
3. Select the information fields that you need.
 - The information field is automatically numbered.
4. Change the settings and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series ID</td>
<td>Displays the designation of the selected series.</td>
</tr>
<tr>
<td>Procedure</td>
<td>Displays the procedure for the selected series (automatic or manual).</td>
</tr>
<tr>
<td>Number of samples</td>
<td>Displays the number of samples of the selected series.</td>
</tr>
</tbody>
</table>

Factory setting: Series ID, [Procedure] and Number of samples activated in this sequence.

15.1.3 Specific protocol information for differential weighing

Navigation: [Main Menu] > [Differential weighing] > [Protocol]

Here you define which data appears in the protocols. This large menu item is divided into three sub-menus. They enable you to make additional settings for the application. The rest of the available protocol data corresponds to the data for the **Weighing** application and is not described here.

The numbered data items are printed in the protocols. The numbers determine the sequence in the printout.

- Information can be activated or deactivated by tapping. The sequence of the keys is automatically updated.
- To redefine the sequence, all information must be deactivated and subsequently activated in the required sequence.
- Application is activated.
1 Press [].
 ⇒ A window with application-dependent settings appears.
2 Tap Protocol > [Define].
 ⇒ Protocol window appears.
3 Tap (e.g. Header) > [Define].
4 Select the information key which you need.
 ⇒ The information key is automatically numbered.
5 Confirm with [OK].
The arrow buttons can be used to page forward or back to a menu page.

Note
The results and data can be printed out at any time.
- A printer is connected and activated as an output device in the peripheral device settings.
 – To print out the settings, press [].

Header line of protocols
Use this sub-menu to define which data is printed in the protocol header (before the results).

Recording of single values
This submenu can be used to define the information to be reported for each individual result.

Recording of results
This submenu can be used to define the form in which the differential weighing results are printed.
The result protocol can be printed by pressing the [] key if the Print key has been configured for printing
series data.
The results are recorded in the selected display unit.
The formulae, on which the settings are based, can be found under - Formulae used for the calculation of
differential weighing results.

Protocol footer
This submenu can be used to define the information to be printed in the protocol footer after the results
(single values).

Number of decimal places
This submenu can be used to define the number of decimal places with which the differential weighing
results are recorded.

Note
This setting refers only to the differential weighing results calculated by the application. In contrast, weights
(tare, initial weighing, residual weighing) are always recorded in the maximum resolution of the respective
balance.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>Define the information to be printed in the protocol header (before the results). Series ID = records the series designation.</td>
<td>Appl. Name*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Single value

Define the information to be recorded for each single result.

- **Sample ID** = records the sample designation.
- **Tare time** = records the tare date and time.
- **Tare** = records the tare weight.
- **Weighing in time** = records the date and time of the initial weighing.
- **Weighing in** = records the initial weight.
- **Time 1 res.wgh** = records the date and time of the first residual weighing.
- **1.Residual wgh** = records the net weight of the first residual weighing.
- **Time 2 res.wgh** = records the date and time of the second residual weighing.
- **2.Residual wgh** = records the net weight of the second residual weighing.
- **Time 3 res.wgh** = records the date and time of the third residual weighing.
- **3.Residual wgh** = records the net weight of the third residual weighing.

| Header | Series ID | Sample ID* | Tare time | Tare* | Weighing in time | Weighing in | Time 1 res.wgh | 1.Residual wgh* | Time 2 res.wgh | 2.Residual wgh* | Time 3 res.wgh | 3.Residual wgh | ID1 | ID2 | ID3 | ID4 | Signature | Blank Line | Dash Line | 3 Blank Lines | Footer |

Result

Define which statistical data is to be recorded.

- **Diff.** = records the absolute difference in weight between initial weighing and residual weighing.
- **Diff. %** = records the difference between initial weighing and residual weighing as a percentage of the initial weight.
- **Abs. %** = records the residual weight as a percentage of the initial weight.
- **Atro AM** = records the moisture content of the sample as a percentage of the dry weight (**ATRO Moisture Content**).
- **Atro AD** = records the wet weight of the sample as a percentage of the dry weight (**ATRO Dry Content**).

| Diff.* | Diff. %* | Abs. %* | Atro AM* | Atro AD |

Footer

Define information to be printed in the protocol footer after the results (single values).

- **Appl. Name** | **Title 1** | **Title 2** | **Date/Time** | **User** | **Balance Type** | **SNR** | **Balance ID** | **Levelcontrol** | **Series ID** | **ID1** | **ID2** | **ID3** | **ID4** | **Signature** | **Blank Line** | **Dash Line** | **3 Blank Lines** |

No. of decimalpoints

Display the results in the protocol with the selected number of decimal places.

- **1** | **2** | **3** | **4** | **5**

* Factory setting

15.1.4 Behavior of the Print key

Navigation: [¶] > [Differential weighing] > [¶] > Print Key

This menu item can be used to define the data to be printed when the [¶] key is pressed.

- Application is activated.

1. Press [¶].

 ⇒ A window with application-dependent settings appears.
2 Tap **Print Key** and subsequently the associated button.
⇒ A selection window appears.

3 Tap (e.g. **Sample**) and confirm with [**OK**].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
<th></th>
</tr>
</thead>
</table>
| Sample | Printing the sample.
When the [**Sample**] key is pressed, a selection window displaying all samples of the current series is displayed. Select the sample to print the data. | |
| Series | Printing data.
When the [**Series**] key is pressed, the data of all samples of the current series is printed. | |

Factory setting: [**Sample**] activated.

15.1.5 Specific setting for processing barcode data

Navigation: [**Menu**] > **[Differential weighing]** > [**Differential weighing**] > [**Bar Code**]

This menu item contains an additional setting for differential weighing. The scanned barcode is interpreted as the sample identification. If the current series contains a sample with this ID, the associated sample is selected and is directly available for the next process step. If the current series does not contain the sample ID, an appropriate message is displayed.

Note

- Application is activated.

1 Press [**Bar Code**].
⇒ A window with application-dependent settings appears.

2 Tap **Bar Code** and subsequently the associated button.
⇒ A selection window appears.

3 Tap **Sample ID** and confirm with [**OK**].

Menu structure

<table>
<thead>
<tr>
<th>Main menu</th>
<th>Submenu</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar Code</td>
<td>Off</td>
<td>ID1</td>
</tr>
</tbody>
</table>

* Factory setting

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample ID</td>
<td>Interprets the barcode as the sample identification.</td>
<td></td>
</tr>
</tbody>
</table>

15.2 Defining, editing, deleting and selecting series

Navigation: [**Menu**] > **[Differential weighing]** > [**Differential weighing**] > [**Series**]

In order to perform a differential weighing, at least one series with minimum one sample must be defined. Press the [**Series**] key and select the menu for the definition of series. There are options for creating a new series as well as for editing and deleting existing series. Select the required series in the last menu item. These options are described in the following sections.

Note

- When the application is started, the balance checks that at least 1 series is present. If this is not the case, the application automatically generates the series 1.
- Application **Diff.weighing** is activated.
- Function keys are selected and activated.

1. Press [Enter].
 - A window with application-dependent settings appears.

2. Tap **Series > [Define]**.
 - A window with application-dependent settings appears.

3. To exit the menu item, tap [OK].

15.2.1 Defining a new series

Navigation: [Analytical Balances] > [Differential weighing] > [Series] > **[New]**

This submenu can be used to define a new series.

- Application **Diff.weighing** is activated.
- Function keys are activated.

1. Press [Enter].
 - A window with application-dependent settings appears.

2. Tap **Series > [New]**.
 - **Series editor** window appears.

3. Tap **Designation** and subsequently the associated button.
 - An alphanumeric input window appears.
 - The series are consecutively numbered by default (series x).

4. Enter the designation and confirm with [OK].

5. Tap **Number of samples** and subsequently the associated button.
 - A numeric input window appears.

6. Enter the number of samples and confirm with [OK].

7. Tap **Procedure** and subsequently the associated button.
 - A selection window appears.

8. Tap, e.g. **[Automatic]**.

9. Tap **Sample ID** and subsequently the associated button.
 - A selection window appears.

10. Enter the sample.
 - An alphanumeric input window appears.
 - The samples are consecutively numbered by default (sample x).

11. Enter the designation and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
<td>Defines the series designation (max 20 characters).</td>
</tr>
<tr>
<td>Number of samples</td>
<td>Defines the number of samples of the series (max. 500 samples).</td>
</tr>
<tr>
<td>Procedure</td>
<td>Selects between an automatic or manual procedure.</td>
</tr>
</tbody>
</table>

- **Automatic** = the user is guided through all steps of differential weighing (taring, initial weighing, residual weighing).
- **Manual** = the user can select the sample processing sequence.

Note

The balance can manage a maximum of 500 samples in total. Available for each series therefore is a maximum of 500 samples, minus the number already used. If a value that exceeds the number of available samples is entered, an appropriate error message is displayed (this can take some time).
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Defines the sample designation (max. 20 characters).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>If the function key with the same name is activated, the sample designations can be directly changed.</td>
</tr>
</tbody>
</table>

15.2.2 Editing an existing series

Navigation:

[Differential weighing] > [Series] > [Edit]

This submenu can be used to edit an existing series. After tapping Series [Edit], a selection window is displayed. Select the series to be edited. The same options are available for editing as for the definition of a new series.

Attention

All series are stored in a single database available to all users. Series created by other users can also be edited. Series must be edited with due care and other application users should be consulted if necessary.

Note

The number of samples of a series can only be reduced to the extent that no samples for which measured values are already available can be deleted. Example: If the number of samples of a series is reduced from 20 to 10 and measured values are already available for sample 15, the number of samples can only be reduced to 15. A further reduction is only possible after the measured values of the respective samples have been cleared (in this example, the measured values of samples 11 – 15).

- Application **Diff.weighing** is activated.
 1. Press [Enter].
 - A window with application-dependent settings appears.
 2. Tap Series > [Edit].
 - A selection window appears.
 3. Tap a series.
 - **Series editor** window appears.
 4. Settings can be changed by tapping the associated button.
 5. To exit the menu item, tap [OK].

15.2.3 Deleting a series

Navigation:

[Differential weighing] > [Series] > [CL Last]

This submenu can be used to delete an existing series. After tapping Series [CL Last], a selection window is displayed. Select the series to be deleted. A request is displayed prior to deletion. If the request is confirmed with the [Yes] key, the series with all recorded measured values and calculated results is deleted.

Attention

All series are stored in a single database available to all users. Series created by other users can also be deleted. Series must be deleted with due care and other application users should be consulted if necessary.

- Application **Diff.weighing** is activated.
 1. Press [Enter].
 - A window with application-dependent settings appears.
 2. Tap Series > [CL Last].
 - A selection window appears.
 3. Tap a series.
 - A confirmation window **Do you really want to delete this serie?** appears.
 4. To delete the series confirm with [Yes].
 - The series is deleted.
 5. To exit the menu item, tap [OK].
15.2.4 Selecting a series for differential weighing

Navigation: [F3] > [Differential weighing] > [Series] > [Selection]

This submenu can be used to select a series for differential weighing. After tapping Series [Selection], a selection window is displayed. Select the required series. If the Series function key is activated, the series can be directly selected by pressing the key.

- Application Diff.weighing is activated.
- Function key is activated.

1 Press [].
 ⇒ A window with application-dependent settings appears.

2 Tap Series > [CL Last].
 ⇒ A selection window appears.

3 Tap a series.
 ⇒ A confirmation window Do you really want to delete this serie? appears.

4 To delete the series confirm with [Yes].
 ⇒ The series is deleted.

5 To exit the menu item, tap [OK].

15.3 Working with the differential weighing application

Navigation: [F3] > [Differential weighing]

This section describes the procedure for working with the Differential weighing application and recording the results.

15.3.1 The various differential weighing methods

There are three different working methods for differential weighing which are supported by the Differential weighing application. These three working methods are described below.

Method 1 (with taring and initial weighing in a single cycle)

This is the simplest method as the tare weight of the sample container and the initial weight (net weight) of the sample are determined in a single operation.

For this method, activate the [T & wgh. in] and [Residual wgh] function keys.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taring and weighing in</td>
<td>Treat sample</td>
<td>Residual weighing</td>
<td>Print results</td>
</tr>
</tbody>
</table>

Sample 1

Sample 2

... ...

Sample n

(n = 1..500)

Method 2 (with separate taring and initial weighing)

With this method, the sample container weight (tare weight) and the initial weight (net weight) of the sample are determined in separate operations. With this method, all weighing containers can initially be tared before all weighings are performed in a second operation.
For this method, activate the [Tare], [Initial weighing] and [Residual wgh function keys].

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
<th>Step 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taring</td>
<td>Weighing in</td>
<td>Treat sample</td>
<td>Residual weighing</td>
<td>Print results</td>
</tr>
</tbody>
</table>

Sample 1 → Sample 2 → … → Sample n (n = 1..500)

Method 3 (free working)

Whereas methods 1 and 2 progress from one sample to the next, method 3 allows free working. Taring, initial weighing and residual weighing can be performed as single steps for each sample. Not all 3 steps need to be performed for a specific sample before the next sample is processed. The following diagram is a free working example:

For this method, activate the [Tare], [Initial weighing] and [Residual wgh function keys].

15.3.2 Initial settings

Depending on the working method, appropriate initial settings should be made.

Irrespective of the working method, the 2 following function keys must be activated for each differential weighing. This selects the series and performs a residual weighing. The series can also be selected via the menu.

Series — Activate function keys.

Residual wgh
The following function keys must also be activated in order to:
• change the sample designation (also possible via the menu);
• display already existing measured values for the current series;
• clear the last determined value.

ID – Activate function keys.

Info

CL value

When working with method 1, the following function key must also be activated.

T & wgh. in – Activate function key.

When working with method 2 or method 3, the following function keys must also be activated.

Tare – Activate function keys.

Initial weighing

The following function keys must be activated for specific cases. This enables the first tare weight to be
 copied to all further samples and differential weighing of a series without tare.

Copy tare – Activate function keys.

No tare

15.3.3 Differential weighing with automatic procedure

In this description, it is assumed that the automatic procedure has been selected for the series to be
processed. The automatic procedure guides the user through methods 1 or 2. The automatic procedure can
be left at any time and a change to a manual procedure made. A change from a manual to an automatic
procedure is also possible at any time.

Preparatory work

The currently active series is displayed in the Series ID information field. Another series can be processed
by tapping the [Series] function key and selecting the required series. To avoid operating errors, only those
function keys are active that are available for the next working step. The other keys are grayed and not
accessible.

A standard sample designation can be changed by tapping the Sample ID function key if the change has
not already been made in the definition of the series. The required designation must be entered for each
sample of a series. The selected designations are also shown in the protocols.

The current differential weighing result can be printed with the [] key. Depending on the settings, either
the selected sample or complete series is recorded. A selection window is displayed prior to printing. Select
the sample for which values are to be recorded.

− A printer is connected and activated as an output device in the peripheral device settings.
− To print out the settings, press [].

Taring and initial weighing of samples

Taring and initial weighing can be carried out in a single operation with the [T & wgh. in] function key.
Taring and initial weighing can be separated by defining a specific [Tare] and [Initial weighing] function
key.

The arrow keys can be used to page between the previous and next sample.
Note

Taring or initial weighing can be interrupted at any time; the previously determined weights remained stored. When the [T & wgh. in] function key is pressed again, the balance automatically displays the first sample for which no tare or initial weight is available.

- Function keys are activated.
- The automatic procedure is activated.

1. Tap [T & wgh. in].
 - The balance displays the first sample of the series for which no tare and initial weight is available.
2. Confirm with [OK].
 - The balance requests that the weighing container (tare weight) for the first sample is placed on the balance.
3. Place the sample on the balance and confirm with [OK].
 - The balance determines the weight.
 - The balance requests initial weighing.
4. Place the sample in the weighing container and confirm with [OK].
 - The balance determines the weight.
 - The balance requests that the sample is removed.
5. Remove the sample container with the sample and confirm with [OK].
 - Initial weighing of the first sample of the series is complete.
 - The balance subsequently automatically starts the above described taring and initial weighing of all further samples of the series.
 - The balance displays the next sample of the series for which no tare and initial weight are available.
6. Confirm with [OK].
 - The balance requests that the weighing container (tare weight) for the sample is placed on the balance.
7. Place the sample on the balance and confirm with [OK].
 - The balance determines the weight.
 - The balance requests initial weighing.
8. Place the sample in the weighing container and confirm with [OK].
 - The balance determines the weight.
 - The balance requests that the sample is removed.
9. Remove the sample container with the sample and confirm with [OK].
 - The balance confirms that taring and initial weighing has been carried out for all samples of the series.
10. Confirm with [OK].
 - The balance is ready for residual weighing.

Residual weighing of samples

Each sample can be residually weighed up to 3 times (e.g. for samples where components are removed or added in several working steps). A window is displayed where residual weighing can be selected. Since no residual weighing has been carried out in the following example, only the first residual weighing is currently available.

The balance displays the first sample of the series for which no corresponding residual weight is available. Another sample can be residually weighed by tapping one of the arrow keys. Paging can take place between the previous and next sample.

A further residual weighing can be carried out by tapping the [Residual wgh] function key. The required residual weighing can be selected from the displayed list. A maximum of 3 residual weighings per sample can be made.
Note
Each residual weighing can be interrupted at any time; the previously determined weights remain stored. The balance automatically displays the first sample for which no residual weight is available when the [Residual wgh] function key is subsequently tapped again.

- Function keys are activated.
- The automatic procedure is activated.

1 Tap [Residual wgh].
2 Tap the [1.Residual wgh] button.
 ⇒ The balance displays the first residual weighing for which no residual weight is available.
3 Confirm with [OK].
 ⇒ The balance requests that the residual weight for the first sample is placed on the balance.
4 Place the residual weight on the balance and confirm with [OK].
 ⇒ The balance determines the residual weight.
 ⇒ The balance requests that the sample is removed.
5 Remove the sample and confirm with [OK].
 ⇒ Residual weighing of the first sample of the series is complete.
 ⇒ The balance subsequently automatically starts the above described operation for residual weighing of all further samples of the series.
 ⇒ The balance displays the next sample of the series for which no residual weight is available.
6 Confirm with [OK].
 ⇒ The balance requests that the residual weight for the sample is placed on the balance.
7 Place the sample on the balance and confirm with [OK].
 ⇒ The balance determines the residual weight.
 ⇒ The balance requests that the sample is removed.
8 Remove the sample and confirm with [OK].
 ⇒ The balance confirms that residual weighing has been carried out for all samples of the series.
9 Confirm with [OK].
 ⇒ Differential weighing is complete.

Displaying differential weighing results
The differential weighing results can be displayed at any time with the [Info] function key. The results for the first sample are displayed. The results and further samples can be displayed at the bottom right of the window by tapping one of the arrow keys. If the results of a sample include several windows, selection can be made between the individual result windows with the scroll keys at the bottom left corner of the window.

The formulae, on which the settings are based, can be found under - Formulae used for the calculation of differential weighing results.

Note
If several residual weighings have been carried out, these are displayed as NR 2 or NR 3. The results are also displayed with the corresponding numbers, e.g. Diff. 1.

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series ID</td>
<td>Records the series designation.</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Records the sample designation.</td>
</tr>
<tr>
<td>T</td>
<td>Reports the tare weight of the sample.</td>
</tr>
<tr>
<td>NE</td>
<td>Reports the initial weight.</td>
</tr>
<tr>
<td>NR 1</td>
<td>Reports the net weight of the first residual weighing.</td>
</tr>
<tr>
<td>Diff. 1</td>
<td>Reports the absolute difference in weight between initial weighing and the first residual weighing of the sample.</td>
</tr>
<tr>
<td>Diff. % 1</td>
<td>Reports the difference between initial weighing and residual weighing as a percentage of the initial weight.</td>
</tr>
</tbody>
</table>
Differential Weighing with Manual Sequence

Differential weighing with a manual sequence differs from the automatic sequence in that the sample processing sequence can be defined by the user.

When differential weighing is started with the `[T & wgh. in]` function key, a selection window is initially displayed. Select the sample for taring and weighing.

In contrast to the automatic sequence, the application does not automatically return to the first sample, the value of which is not yet available. The sample to be processed must be selected by the user. The sequence after taring and initial weighing of the first sample is ended and not automatically restarted. Further samples can now either be tared and initially weighed or residual weighing carried out for the first sample with the `[Residual wgh]` function key. The sample selection window is also displayed for residual weighing.

Note
The sample selection window only displays the samples for which the appropriate operation has not yet been carried out.

Preparatory Work

The currently active series is displayed in the **Series ID** information field. Another series can be processed by tapping the `[Series]` function key and selecting the required series. To avoid operating errors, only those function keys are active that are available for the next working step. The other keys are grayed and not accessible.

A standard sample designation can be changed by tapping the **Sample ID** function key if the change has not already been made in the definition of the series. The required designation must be entered for each sample of a series. The selected designations are also shown in the protocols.

The current differential weighing result can be printed with the `[]` key. Depending on the settings, either the selected sample or complete series is recorded. A selection window is displayed prior to printing. Select the sample for which values are to be recorded.

- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press `[]`.

Taring and Initial Weighing of Samples

Taring and initial weighing can be carried out in a single operation with the `[T & wgh. in]` function key. Taring and initial weighing can be separated by defining a specific `[Tare]` and `[Initial weighing]` function key.

The arrow keys can be used to page between the previous and next sample.

- Function keys are activated.

1. Tap `[T & wgh. in]`.
 - A selection window is displayed.
2. Tap the sample to be processed.
 - The balance requests that the weighing container (tare weight) for the first sample is placed on the balance.
3. Place the sample on the balance and confirm with `[OK]`.
 - The balance determines the weight.
 - The balance requests initial weighing.
4. Place the sample in the weighing container and confirm with `[OK]`.
 - The balance determines the weight.
 - The balance requests that the sample is removed.
5. Remove the sample container with the sample and confirm with `[OK]`.
 - Initial weighing of the first sample of the series is complete.
6 Tap \([\text{T & wgh. in}].\)
 \(\Rightarrow\) A selection window is displayed.
7 Tap the sample to be processed.
 \(\Rightarrow\) The balance requests that the weighing container (tare weight) for the sample is placed on the balance.
8 Place the sample on the balance and confirm with \([\text{OK}].\)
 \(\Rightarrow\) The balance determines the weight.
 \(\Rightarrow\) The balance requests initial weighing.
9 Place the sample in the weighing container and confirm with \([\text{OK}].\)
 \(\Rightarrow\) The balance determines the weight.
 \(\Rightarrow\) The balance requests that the sample is removed.
10 Remove the sample container with the sample and confirm with \([\text{OK}].\)
 \(\Rightarrow\) Taring and initial weighing is complete.
 \(\Rightarrow\) The balance is ready for residual weighing.

Residual weighing of samples

Each sample can be residually weighed up to 3 times (e.g. for samples where components are removed or added in several working steps). A window is displayed where residual weighing can be selected. Since no residual weighing has been carried out in the following example, only the first residual weighing is currently available.

The balance displays the first sample of the series for which no corresponding residual weight is available. Another sample can be residually weighed by tapping one of the arrow keys. Paging can take place between the previous and next sample.

A further residual weighing can be carried out by tapping the \([\text{Residual wgh}]\) function key. The required residual weighing can be selected from the displayed list. A maximum of 3 residual weighings per sample can be made.

- Function keys are activated.
1 Tap \([\text{Residual wgh}].\)
2 Tap the \([1.\text{Residual wgh}].\) button.
 \(\Rightarrow\) A selection window appears.
3 Tap the sample to be processed.
 \(\Rightarrow\) The balance requests that the residual weight for the first sample is placed on the balance.
4 Place the residual weight on the balance and confirm with \([\text{OK}].\)
 \(\Rightarrow\) The balance determines the residual weight.
 \(\Rightarrow\) The balance requests that the sample is removed.
5 Remove the sample and confirm with \([\text{OK}].\)
 \(\Rightarrow\) Residual weighing of the first sample of the series is complete.
6 Tap \([\text{Residual wgh}].\)
7 Tap the \([1.\text{Residual wgh}].\) button.
8 Tap the sample to be processed.
 \(\Rightarrow\) The balance requests that the residual weight for the sample is placed on the balance.
9 Place the sample on the balance and confirm with \([\text{OK}].\)
 \(\Rightarrow\) The balance determines the residual weight.
 \(\Rightarrow\) The balance requests that the sample is removed.
10 Remove the sample and confirm with \([\text{OK}].\)
 \(\Rightarrow\) Residual weighing is complete.
 \(\Rightarrow\) Differential weighing is complete.
Displaying differential weighing results

The differential weighing results can be displayed at any time with the [Info] function key. The results for the first sample are displayed. The results and further samples can be displayed at the bottom right of the window by tapping one of the arrow keys. If the results of a sample include several windows, selection can be made between the individual result windows with the scroll keys at the bottom left corner of the window.

The formulae, on which the settings are based, can be found under - Formulae used for the calculation of differential weighing results.

Note

If several residual weighings have been carried out, these are displayed as NR 2 or NR 3. The results are also displayed with the corresponding numbers, e.g. Diff. 1.

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series ID</td>
<td>Records the series designation.</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Records the sample designation.</td>
</tr>
<tr>
<td>T</td>
<td>Reports the tare weight of the sample.</td>
</tr>
<tr>
<td>NE</td>
<td>Reports the initial weight.</td>
</tr>
<tr>
<td>NR 1</td>
<td>Reports the net weight of the first residual weighing.</td>
</tr>
<tr>
<td>Diff. 1</td>
<td>Reports the absolute difference in weight between initial weighing and the first residual weighing of the sample.</td>
</tr>
<tr>
<td>Diff. % 1</td>
<td>Reports the difference between initial weighing and residual weighing as a percentage of the initial weight.</td>
</tr>
<tr>
<td>Abs. % 1</td>
<td>Reports the residual weight as a percentage of the initial weight.</td>
</tr>
<tr>
<td>Atro AM 1</td>
<td>Reports the moisture content of the sample as a percentage of the dry weight.</td>
</tr>
<tr>
<td>Atro AD 1</td>
<td>Reports the wet weight of the sample as a percentage of the dry weight.</td>
</tr>
</tbody>
</table>

15.3.5 Example of a differential weighing protocol

The detail of a protocol depends on the selected protocol settings. Only application-specific information is shown in the example printout.

The current differential weighing result can be printed with the [Print] key. Depending on the settings, either the selected sample or complete series is recorded. A selection window is displayed prior to printing. Select the sample for which values are to be recorded.

Example: Printout

```
- Differential weighing-
25.Jul 2014        15:49
Sample ID          M414/1
T                  6.7125 g
NE                 17.0930 g
NR 1               15.6778 g
Diff. 1            -1.4152 g
Diff. % 1          -8.279 %
Abs. % 1           91.721 %
Atro AM 1          -9.027 %
Signature
........................
```

15.3.6 Further options

Further options for the Differential weighing application are described in this section.
Clearing a single value
If an error is noticed after determining a weight (tare, initial weighing, residual weighing), the last determined value can be cleared with the [CL value] function key. However, this is only possible if no menu has been selected and the application has not been left. After changing a sample or series, the last determined value can no longer be cleared.

- Function key is activated.
1 Tap the [CL value] function key.
 - A confirmation window Are you sure you want to clear this entry? appears.
2 To clear the value, tap [Yes].
 - The value is cleared.
 - Entry cleared window appears.
3 Confirm with [OK].
 - The value is cleared.

Clearing all values of a sample
If an error is made during differential weighing, all measured values of a single sample can be cleared. To clear the values of a sample, the [CL sample] function key must be activated.

Attention
All series and samples are stored in a single database available to all users. The series and samples defined by other users can be cleared. Series and samples must be cleared with due care and other application users consulted if necessary.

- Function key is activated.
1 Tap the [CL sample] function key.
 - A selection window appears.
2 Tap on the sample to be cleared.
 - A confirmation window Are you sure you want to clear all entries of this sample? appears.
3 To clear values, tap [Yes].
 - Values are cleared.
 - Sample cleared window appears.
4 Confirm with [OK].
 - Values are cleared.

Copy tare
The tare weight of the first sample can be copied for all further samples of the series for which no tare weight is available with the [Copy tare] function key (existing tare weights are retained!). This can save time if the same tare container is used for all samples.

Note
The function key is inactive as long as no tare weight has been determined for the first sample or if samples of the series already have a tare weight.

- Function key is activated.
- Tare weight for sample is copied.
1 Tap the [Copy tare] function key.
 - A confirmation window Are you sure you want to copy the first tare weight to all free samples? appears.
2 To copy the tare weight, tap [Yes].
 - Tare weight is copied.
 - Copy tare weight done window appears.
3 Confirm with [OK].
 - Tare weight is copied.
Differential weighing without tare

For specific applications where no tare containers are used (e.g. filter weighings), the tare can be suppressed for the complete series. This saves time. To process a series without tare, the [No tare] function key must be activated.

If tare is suppressed, this applies to all samples of the series for which no tare weight is available. Existing tare weights are retained. All not yet available tare weights are set to zero. If a tare weight is nonetheless determined for a specific sample of this series, all measured values of the respective sample must initially be cleared.

- Function key is activated.
1 Tap the [No tare] function key.
 ⇒ A confirmation window Are you sure you do not need a tare for this series? appears.
2 Confirm with [Yes].
 ⇒ Tare weight is cleared.
 ⇒ No tare function done window appears.
3 Confirm with [OK].
 ⇒ Tare weight is cleared.

15.4 Formulae used for the calculation of differential weighing results

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diff.</td>
<td>Residual weight – Initial weight</td>
</tr>
<tr>
<td>Diff. %</td>
<td>(\frac{(\text{Residual weight – Initial weight}) \cdot 100%}{\text{Initial weight}})</td>
</tr>
<tr>
<td>Abs. %</td>
<td>(\frac{\text{Residual weight} \cdot 100%}{\text{Initial weight}})</td>
</tr>
<tr>
<td>Atro AM</td>
<td>(\frac{- [\text{Initial weight} \text{ (wet weight)} – \text{Residual weight} \text{ (dry weight)}] \cdot 100%}{\text{Residual weight} \text{ (dry weight)}})</td>
</tr>
<tr>
<td>Atro AD</td>
<td>(\frac{\text{Initial weight} \text{ (wet weight)} \cdot 100%}{\text{Residual weight} \text{ (dry weight)}})</td>
</tr>
</tbody>
</table>

16 Percent Weighing Application

The Percentweighing application enables weighing to a predefined weight (100%) and identification of deviations from this nominal weight.

All application settings are saved under the active user profile.

Only the settings and functions that differ from those of the Weighing application are described in detail below.

Selecting the application

1. Press
2. Tap the Percentweighing icon in the selection window.
 - The selected application is active.
 - Some of the specific function keys and information fields for percent weighing are activated by default (factory defaults).
 - The balance is ready for weighing.

16.1 Settings for percent weighing application

Several specific settings are available for percent weighing. You can use them to adapt the application to your needs.

Most of the setting options are the same as for the Weighing application. Only the settings that differ are described below.

Unlike the Weighing application, no custom unit can be specified. The MinWeigh feature is available.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function Keys</td>
<td>Defines the function keys for percent weighing to appear at the bottom of the display. These keys enable direct access to specific functions.</td>
<td>See [Specific function key for percent weighing 220]</td>
</tr>
<tr>
<td>Info Field</td>
<td>Defines the information fields to be displayed for percent weighing.</td>
<td>See [Specific information fields for percent weighing 221]</td>
</tr>
<tr>
<td>Display Unit</td>
<td>Defines the unit for result display.</td>
<td>See [Additional unit for percent weighing 222]</td>
</tr>
<tr>
<td>Info Unit</td>
<td>Defines an additional weighing unit. This is displayed in the respective information field.</td>
<td>See [Additional unit for percent weighing 222]</td>
</tr>
<tr>
<td>Protocol</td>
<td>Selects information to be displayed in the weighing protocols.</td>
<td>See [Specific protocol information for percent weighing 222]</td>
</tr>
<tr>
<td>Smart & ErgoSens</td>
<td>Programs both SmartSens sensors of the terminal. Up to two external ErgoSens (optional) can be assigned a function in this menu.</td>
<td>See [Specific SmartSens and ErgoSens settings for percent weighing 223]</td>
</tr>
</tbody>
</table>

16.1.1 Specific function key for percent weighing

This menu item can be used to activate the following specific function keys for percent weighing.

All other function keys are the same as for the Weighing application.
The function keys are displayed in the application at the bottom of the display. The numbers define the sequence in the display.

- Activate or deactivate function keys by tapping.
- To redefine the sequence, all function keys must be deactivated and subsequently activated in the required sequence.
- Application is activated.

1 Press \[\text{[Set100\%]} \].
 ⇒ A window with application-dependent settings appears.
2 Tap \[\text{Function Keys \> [Define]} \].
3 Select the \[\text{Function Keys} \] which you need.
 ⇒ The function key is automatically numbered.
4 Change the settings and confirm with \[\text{[OK]} \].

The arrow buttons can be used to page forward or back to a menu page.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\text{Set100%}]</td>
<td>Defines the current weight as a reference (100%).</td>
</tr>
<tr>
<td>[\text{VarRef%}]</td>
<td>Assigns the current weight a variable reference.</td>
</tr>
<tr>
<td>[\text{Nominal}]</td>
<td>Defines the desired nominal weight. This also serves as a reference for the tolerances.</td>
</tr>
<tr>
<td>[+Tol]</td>
<td>Defines the accuracy (tolerances) for percent weighing.</td>
</tr>
<tr>
<td>[-Tol]</td>
<td>Defines the accuracy (tolerances) for percent weighing.</td>
</tr>
</tbody>
</table>

Factory setting: \[\text{[Set100\%]} \] and \[\text{[VarRef\%]} \] activated in this sequence.

16.1.2 Specific information fields for percent weighing

Navigation: \[\text{[Weighting]} \> \[\text{Percentweighing} \] > \[\text{[Information]} \] > \[\text{Info Field} \]

This menu item contains the following information fields for percent weighing.

All other data fields are the same as for the \[\text{Weighing} \] application.

The information fields in the display provide constant information on, e.g. set values, measured results.
- Information fields can be activated or deactivated by tapping.
- To redefine the sequence, all information fields must be deactivated and then activated in the required sequence.
- Application is activated.

1 Press \[\text{[Information]} \].
 ⇒ A window with application-dependent settings appears.
2 Tap \[\text{Info Field \> [Define]} \].
3 Select the information fields that you need.
 ⇒ The information field is automatically numbered.
4 Change the settings and confirm with \[\text{[OK]} \].

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference%</td>
<td>Displays the reference weight in percent.</td>
</tr>
<tr>
<td>Reference</td>
<td>Displays the absolute weight of the reference.</td>
</tr>
<tr>
<td>Nominal</td>
<td>This function key displays the nominal weight.</td>
</tr>
</tbody>
</table>
+Tol
This function key displays the entered tolerance for weighing-in to nominal weight.

-Tol
This function key displays the entered tolerance for weighing-in to nominal weight.

Factory setting: Reference% and Reference activated in this sequence.

16.1.3 Additional unit for percent weighing

Navigation: Percentweighing > Display Unit or Info Unit

The unit % (percent) is additionally displayed in the Display Unit and Info Unit menu items next to the known weighing units. This assumes that a reference has already been determined.

Note

The unit % does not need to be explicitly selected for percent weighing as the unit is always switched automatically to % when determining the reference. The required unit can subsequently be selected as required.

1 Press ▶.
 ⇒ A window with application-dependent settings opens.
2 Beside Display Unit or Info Unit, tap the associated button.
 ⇒ A selection window appears.
3 Change the setting and confirm with ▶ OK.

Factory setting: g (Grams) for Display Unit and Info Unit.

16.1.4 Specific protocol information for percent weighing

Navigation: Percentweighing > Protocol

Here you define which data appears in the protocols. This large menu item is divided into three sub-menus. They enable you to make additional settings for the application. The rest of the available protocol data corresponds to the data for the Weighing application and is not described here.

The numbered data items are printed in the protocols. The numbers determine the sequence in the printout.

- Information can be activated or deactivated by tapping. The sequence of the keys is automatically updated.
- To redefine the sequence, all information must be deactivated and subsequently activated in the required sequence.
- Application is activated.

1 Press ▶.
 ⇒ A window with application-dependent settings appears.
2 Tap Protocol > Define.
 ⇒ Protocol window appears.
3 Tap (e.g. Header) > Define.
4 Select the information key which you need.
 ⇒ The information key is automatically numbered.
5 Confirm with ▶ OK.

The arrow buttons can be used to page forward or back to a menu page.

Note

The results and data can be printed out at any time.

- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press ▶.

Header line of protocols

Use this sub-menu to define which data is printed in the protocol header (before the results).
The header is automatically printed if defined as part of the weighing protocol (in recording single values submenu).

However, the header can also be printed separately by tapping the [Header] function key.

Recording of single values
This submenu can be used to define the information to be reported for each individual result.
Printing takes place by pressing the [Print] key or automatically if the automatic print function is activated.

Protocol footer
This submenu can be used to define the information to be printed in the protocol footer after the results (single values).
The footer can be printed by tapping the [Footer] function key.
You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>Define the information to be printed in the protocol header (before the results).
Ref%, Ref. = records the reference in percent and weight.
Nom.,+Tol,-Tol = records the defined nominal weight and determined plus/minus tolerances.</td>
<td>Appl. Name*</td>
</tr>
<tr>
<td>Single value</td>
<td>Define the information to be recorded for each single result.
Diff. = records the deviation from the nominal weight as a weight.
Diff. % = records the deviation from the nominal weight in percent.</td>
<td>Header</td>
</tr>
<tr>
<td>Footer</td>
<td>Define information to be printed in the protocol footer after the results (single values).</td>
<td>Appl. Name</td>
</tr>
</tbody>
</table>

* Factory setting

16.1.5 Specific SmartSens and ErgoSens settings for percent weighing

Navigation: [Home > Percent weighing] > [Smart & ErgoSens]
Additional settings for percent weighing are available for the SmartSens and ErgoSens sensors.
Only the settings and functions that differ from those of the **Weighing** application are described in detail below.
When one of the functions is activated, the green **F** symbol (Function) lights up in the status bar below the respective sensor.
1. Press [\[\]].
 ⇒ A window with application-dependent settings appears.
2. Tap Smart & ErgoSens > [Define].
 ⇒ A selection window appears.
3. Select the required menu item (e.g. SmartSens left).
 ⇒ A selection window appears.
4. Select the function and confirm with [OK].

Menu structure

<table>
<thead>
<tr>
<th>Main menu</th>
<th>Submenu</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartSens left</td>
<td>Off</td>
<td>Door</td>
</tr>
<tr>
<td>SmartSens right</td>
<td>Off</td>
<td>Door</td>
</tr>
<tr>
<td>ErgoSens 1 (Aux1)</td>
<td>Off</td>
<td>Door</td>
</tr>
<tr>
<td>ErgoSens 2 (Aux2)</td>
<td>Off</td>
<td>Door</td>
</tr>
</tbody>
</table>

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>VarRef%</td>
<td>Emulates the function key with the same name. Assigns the current weight a</td>
</tr>
<tr>
<td></td>
<td>variable reference.</td>
</tr>
<tr>
<td>Set100%</td>
<td>Emulates the function key with the same name. Defines the current weight as</td>
</tr>
<tr>
<td></td>
<td>a reference (100%).</td>
</tr>
</tbody>
</table>

Factory setting: SmartSens left and right configured for door operation (draft shield). Both ErgoSens deactivated, [Off].

16.2 Working with the percent weighing application

Navigation: [\[\]] > [Percentweighing]

This section describes working with the Percentweighing application. Among other things, you can determine a tare weight, change the resolution of the weighing result or work with identifications.

You are probably already familiar with these options from the Weighing application. They are therefore not described again here.

16.2.1 Simple percent weighing

Initial settings

To perform a percent weighing, the two following function keys must be activated.
Determining the reference
Place the reference weight on the weighing pan. If the applied reference weight is to correspond to 100%, press the [Set100%] function key. When the weighing result is stable, the determined weight is taken over as a reference. The reference weight (100%) is shown in the result display and information field Reference %.

If the applied weight is assigned a variable reference, press the [VarRef%] function key. Displayed is an input field in which the percentage (e.g. 60%) is defined corresponding to the applied weight.

Performing a percent weighing
The measured single value can be printed out with the [key].

- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [].

Note
If the weight of the product is to be displayed instead of the percentage, tap the unit [%]. Tap the required weighing unit from the selection window.

- Function keys are activated.

1 Place the reference weight on the weighing pan.
2 Tap [Set100%].
 ⇒ When the result is stable (horizontal lines disappear), the determined weight is taken as a reference.
 ⇒ The reference weight (100%) is shown in the result display and information field Reference %.
 ⇒ The absolute reference weight appears in the Reference information field.
3 Place the product on the balance.
4 Press [] to print the percent weighing result.
5 Tap [Footer] to print the footer.
 ⇒ Percent weighing is complete.

16.2.2 Percent weighing to a nominal weight
The Percent application offers additional functions to facilitate weighing to a defined nominal weight. It is assumed that the reference for percent weighing has already been determined.

Initial settings
To enter the nominal value and the associated tolerance range, activate the function keys listed below. Also activate the data fields with the same names so that the defined values will be displayed.

Procedure
Note
Units are not converted automatically. If a value is entered in a unit, this value is maintained even if the unit is changed.
1 Tap [Nominal].
 ⇒ A numeric input window appears.
2 Enter the required value, e.g. 130%.
 - If a weight corresponding to the nominal weight is already on the balance, it can be directly taken over
 by tapping the button with the balance icon.
 Check the weighing unit to the right of the nominal weight.
 A selection of available units, including [%] (percent) can be displayed by tapping the weighing unit.
 Note
 The unit [%] is only available after the reference has been determined.
3 Confirm with [OK] to activate the nominal weight.
4 Tap [+Tolerance] and/or [-Tolerance]
 ⇒ A numeric input window appears.
5 Enter the required value.
 Both tolerances are set to 2.5% by default. Instead of a percentage, an absolute tolerance can also be
 entered in any unit, e.g. [%].
6 Confirm with [OK] to activate the tolerance.
 Note
 Percent weighings outside the tolerances are specifically marked with >T+ or <T- when recording single
 values.
 ⇒ The SmartTrac graphic weighing-in aid with tolerance marks to facilitate weighing-in to the nominal
 weight appears.
 ⇒ Products can be roughly weighed until the tolerance is reached and subsequently finely dosed up to the
 nominal weight.

16.2.3 Sample protocol of a percent weighing

The detail of a protocol depends on the selected protocol settings. Only application-specific information is
shown in the example printout.

Example: Printout

```
----- Percent weighing ----
Reference%   100.00 %
Reference     27.05 g
Nominal         ... %
-Tol           2.50 %
             129.06 %
Diff.%        -0.94 %
Signature
........................
```
17 Piece Counting Application

The Piececounting application allows you to determine the number of pieces put on the weighing pan. It is advantageous if all pieces are of approximately equal weight, since the unit quantity is determined on the basis of average weight. Various methods can be used to determine the reference unit weight.

All application settings are saved under the active user profile. Only the settings and functions that differ from those of the Weighing application are described in detail below.

Selecting the application

1. Press .
2. Tap the Piececounting icon in the selection window.
 - The selected application is active.
 - Some of the specific function keys and data fields for piece counting are activated by default (factory defaults).
 - The balance is ready for piece counting.

17.1 Piece counting application settings

Several specific settings are available for piece counting. You can use them to adapt the application to your needs.

Most of the setting options are the same as for the Weighing application. Only the settings that differ are described below.

Unlike the Weighing application, no custom unit can be specified. The MinWeigh feature is available.

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>FixPcs</td>
<td>Definition of a fixed reference unit quantity.</td>
<td>See [Defining the fixed reference unit quantity]</td>
</tr>
<tr>
<td>Function Keys</td>
<td>Define which function keys for piece counting are shown at the bottom of the display. These keys enable direct access to specific functions.</td>
<td>See [Specific function keys for piece counting]</td>
</tr>
<tr>
<td>Info Field</td>
<td>Define which data fields for piece counting are displayed.</td>
<td>See [Specific information fields for piece counting]</td>
</tr>
<tr>
<td>Autom. WeightEntry</td>
<td>Activate/deactivate automatic weight entry.</td>
<td>See [Specifications for automatic weight entry]</td>
</tr>
<tr>
<td>Display Unit</td>
<td>Define the unit for the result display.</td>
<td>See [Additional unit for piece counting]</td>
</tr>
<tr>
<td>Info Unit</td>
<td>Define an additional weighing unit. This appears in the corresponding data field on the display.</td>
<td>See [Additional unit for piece counting]</td>
</tr>
<tr>
<td>Protocol</td>
<td>Select data to be shown on the weighing protocol.</td>
<td>See [Specific protocol information for piece counting]</td>
</tr>
<tr>
<td>Smart & ErgoSens</td>
<td>Programs the two SmartSens sensors on the terminal. Up to two external ErgoSens (optional) can be assigned a particular function in this menu.</td>
<td>See [Specific SmartSens and ErgoSens settings for piece counting]</td>
</tr>
</tbody>
</table>
17.1.1 Defining the fixed reference unit quantity

Here you define which fixed reference quantity the function key [FixPcs] refers to.

When carrying out piece counting, each time the function key [FixPcs] is tapped, the weight is divided by the defined, fixed reference unit quantity. This determines the reference unit weight on which the piece counting is based.

Note
The function key [FixPcs] is labeled with [Fix n], with n being the selected number of reference units.

Example: [Fix 10].

1 Press [Fix].
 ⇨ A window with application-dependent settings appears.
2 Beside FixPcs, tap the associated button.
 ⇨ A numeric input window appears.
3 Change the settings and confirm with [OK].
 ⇨ Function key is labeled with a new reference unit quantity.

Factory setting: [Fix 10] PCS.

17.1.2 Specific function keys for piece counting

This menu item allows you to activate the specific function keys listed below for piece counting.

All other function keys are the same as for the Weighing application.

The function keys are displayed in the application at the bottom of the display. The numbers define the sequence in the display.

- Activate or deactivate function keys by tapping.
- To redefine the sequence, all function keys must be deactivated and subsequently activated in the required sequence.
- Application is activated.

1 Press [Fix].
 ⇨ A window with application-dependent settings appears.
2 Tap Function Keys > [Define].
3 Select the Function Keys which you need.
 ⇨ The function key is automatically numbered.
4 Change the settings and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FixPcs</td>
<td>Determines the reference unit weight with a defined, fixed number of pieces.</td>
</tr>
<tr>
<td>VarPcs</td>
<td>Selects the reference unit quantity.</td>
</tr>
<tr>
<td>PcsWgt</td>
<td>Enters the known weight of a reference unit.</td>
</tr>
<tr>
<td>RefOpt</td>
<td>Performs reference optimization.</td>
</tr>
<tr>
<td>M+</td>
<td>Saves the current unit quantity to the memory.</td>
</tr>
<tr>
<td>Result</td>
<td>Opens the results window.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>CL Result</td>
<td>Clears the results memory.</td>
</tr>
<tr>
<td>CL Last</td>
<td>Deletes the last saved value.</td>
</tr>
<tr>
<td>Nominal</td>
<td>Defines the desired nominal unit quantity. This also serves as a reference</td>
</tr>
<tr>
<td></td>
<td>for the tolerances.</td>
</tr>
<tr>
<td>Abs/Diff</td>
<td>Switches the weight display between the unit quantity already weighed in and</td>
</tr>
<tr>
<td></td>
<td>the number of units still to be weighed in until the nominal unit quantity</td>
</tr>
<tr>
<td></td>
<td>is reached.</td>
</tr>
<tr>
<td>+Tol</td>
<td>Defines the accuracy (tolerance range) for piece counting.</td>
</tr>
<tr>
<td>-Tol</td>
<td>Defines the accuracy (tolerance range) for piece counting.</td>
</tr>
<tr>
<td>Max n</td>
<td>Defines the maximum number of piece counts in a series.</td>
</tr>
</tbody>
</table>

Factory setting: [PcsWgt], [FixPcs], [VarPcs] and [Nominal] are activated in this order.

17.1.3 Specific information fields for piece counting

Navigation: [] > [Piececounting] > [] > Info Field

This menu item provides the information fields listed below for piece counting.

All other data fields are the same as for the Weighing application.

The information fields in the display provide constant information on, e.g. set values, measured results.

- Information fields can be activated or deactivated by tapping.
- To redefine the sequence, all information fields must be deactivated and then activated in the required sequence.
- Application is activated.

1. Press [].
 - A window with application-dependent settings appears.
2. Tap Info Field > [Define].
3. Select the information fields that you need.
 - The information field is automatically numbered.
4. Change the settings and confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RefPcs</td>
<td>Shows the selected reference unit quantity.</td>
</tr>
<tr>
<td>PcsWgt</td>
<td>Shows the reference unit weight.</td>
</tr>
<tr>
<td>n</td>
<td>Shows the number of piece counts carried out in a series.</td>
</tr>
<tr>
<td>x</td>
<td>Shows the average unit quantity of all piece counts in a series.</td>
</tr>
<tr>
<td>s</td>
<td>Shows the standard deviation as an absolute value.</td>
</tr>
<tr>
<td>s.rel</td>
<td>Shows the standard deviation as a percentage.</td>
</tr>
<tr>
<td>Sum</td>
<td>Shows the unit quantity of all counts in a series.</td>
</tr>
<tr>
<td>>T+</td>
<td>Shows the number of piece counts outside the upper weight tolerance.</td>
</tr>
<tr>
<td><T-</td>
<td>Shows the number of piece counts outside the lower weight tolerance.</td>
</tr>
<tr>
<td>Min</td>
<td>Shows the smallest measured unit quantity in a series of piece counts.</td>
</tr>
<tr>
<td>Max</td>
<td>Shows the largest measured unit quantity in a series of piece counts.</td>
</tr>
</tbody>
</table>
Diff. | Shows the difference between the smallest and largest unit quantity in a series of piece counts.
---|---
Nominal | This function key displays the nominal unit quantity.
+Tol | This function key displays the entered tolerance for piece counting.
-Tol | This function key displays the entered tolerance for piece counting.

Factory setting: PcsWgt activated.

17.1.4 Specifications for automatic weight entry

Navigation: [Home] > [Piececounting] > [] > Autom. WeightEntry

Here you define whether and under which conditions the balance should automatically enter stable weight values in the statistics. This saves you the effort of tapping the [M+] function key. The value is printed automatically.

When this function is activated [On], the criteria for automatic entry can be defined via the [Define] button.

1. Press []
 - A window with application-dependent settings appears.
2. Beside **Autom. WeightEntry**, tap the associated button.
 - **Autom. WeightEntry** window appears.
3. Tap [On] > [Define].
4. Change the settings and confirm with [OK].

You can define the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit</td>
<td>This value defines which limit must be exceeded for automatic entry.</td>
<td>User-defined</td>
</tr>
<tr>
<td>Delay Time</td>
<td>When the limit is exceeded, the Delay Time is started, and when it times out the value is captured and entered in the statistics or transferred over the interface.</td>
<td>User-defined (displayed in seconds)</td>
</tr>
</tbody>
</table>

17.1.5 Additional unit for piece counting

Navigation: [Home] > [Piececounting] > [] > Display Unit or Info Unit

The PCS unit (piece) is also available beside the known weighing units in the Display Unit and Info Unit menu topics, provided that a reference unit weight has already been determined.

Note

You do not explicitly need to select the PCS unit for piece counting, since the display unit is always automatically switched to PCS when the reference unit weight is being determined. Afterwards, you can select the desired unit again at any time, unless you have already saved a value to the memory for a series of piece counts. In this case, switching between PCS and the other weighing units is only possible after deleting the results.

1. Press []
 - A window with application-dependent settings opens.
2. Beside **Display Unit** or **Info Unit**, tap the associated button.
 - A selection window appears.
3. Change the setting and confirm with [OK].

Factory setting: g (Grams) for **Display Unit** and **Info Unit**.
Specific protocol information for piece counting

Navigation: [.] > [Piececounting] > [] > Protocol

Here you define which data appears in the protocols. This large menu item is divided into three sub-menus. They enable you to make additional settings for the application. The rest of the available protocol data corresponds to the data for the Weighing application and is not described here.

The numbered data items are printed in the protocols. The numbers determine the sequence in the printout.

- Information can be activated or deactivated by tapping. The sequence of the keys is automatically updated.
- To redefine the sequence, all information must be deactivated and subsequently activated in the required sequence.
 - Application is activated.
 1. Press [].
 2. Tap Protocol > [Define].
 4. Tap (e.g. Header) > [Define].
 5. Select the information key which you need.
 6. The information key is automatically numbered.
 7. Confirm with [OK].

The arrow buttons can be used to page forward or back to a menu page.

Note

The results and data can be printed out at any time.

- A printer is connected and activated as an output device in the peripheral device settings.
 - To print out the settings, press [].

Header line of protocols

Use this sub-menu to define which data is printed in the protocol header (before the results).

The header is printed automatically for piece counts when the first count is entered in the statistics by tapping the [M+] function key.

However, the header can also be printed separately by tapping the [Header] function key.

Recording of single values

This submenu can be used to define the information to be reported for each individual result.

Tap the [M+] function key to activate automatic printing of single values during a series of counts.

A single value can also be printed separately by pressing the [] key.

Recording of results

Here you can define which additional data is to be recorded in the results protocol.

The result protocol can be printed by pressing the [] key with the result window.

If a specific number of counts [Max n] is defined for a series of piece counts, the results protocol is automatically printed after the weight of the last count has been entered in the statistics.

You can define the following parameters:
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>Define the information to be printed in the protocol header (before the results).</td>
<td>Appl. Name*</td>
</tr>
<tr>
<td></td>
<td>Max n = records the defined maximum number of piece counts in the series.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nom.,+Tol,-Tol = records the defined nominal unit quantity and the defined plus and minus tolerances.</td>
<td></td>
</tr>
<tr>
<td>Single value</td>
<td>Define the information to be recorded for each single result.</td>
<td>Header</td>
</tr>
<tr>
<td></td>
<td>RefPcs = records the selected reference unit quantity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PcsWgt = records the defined reference unit weight.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NetPcs = records the measured net unit quantity.</td>
<td></td>
</tr>
<tr>
<td>Result</td>
<td>Define which statistical data is to be recorded.</td>
<td>Appl. Name</td>
</tr>
<tr>
<td></td>
<td>>Tol+,<Tol- = records the number of counts that are outside the tolerance range.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = records the number of piece counts carried out in a series.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x = records the average unit quantity of all counts in a series.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s = records the standard deviation as an absolute value.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>The value is only recorded if there are at least three values in the statistics. Otherwise a dash is shown instead of a value.</td>
</tr>
<tr>
<td></td>
<td>s.rel = records the relative standard deviation within the series as a percentage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The value is always recorded with a resolution of two decimal places.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>The value is only recorded if there are at least three values in the statistics. Otherwise a dash is shown instead of a value.</td>
</tr>
<tr>
<td></td>
<td>Min,Max,Diff = Min = records the smallest measured unit quantity of the current series.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max = records the largest measured unit quantity of the current series.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diff. = records the difference between the smallest and largest unit quantity of the current series.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sum = records the total value of all saved individual weighings.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SumPcs = records the total unit quantity of all saved individual counts.</td>
<td></td>
</tr>
</tbody>
</table>

* Factory setting

17.1.7 Specific SmartSens and ErgoSens settings for piece counting

Navigation: [Settings] > [Piececounting] > [Smart & ErgoSens]

Additional settings are available for the SmartSens and ErgoSens sensors.
Only the settings and functions that differ from those of the Weighing application are described in detail below.

When one of the functions is activated, the green F symbol (Function) lights up in the status bar below the respective sensor.

1 Press [F].
 ⇒ A window with application-dependent settings appears.
2 Tap Smart & ErgoSens > [Define].
 ⇒ A selection window appears.
3 Select the required menu item (e.g. SmartSens left).
 ⇒ A selection window appears.
4 Select the function and confirm with [OK].

Menu structure

<table>
<thead>
<tr>
<th>Main menu</th>
<th>Submenu</th>
<th>Further information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartSens left</td>
<td>Off</td>
<td>Door</td>
</tr>
<tr>
<td>SmartSens right</td>
<td>Off</td>
<td>Door</td>
</tr>
<tr>
<td>ErgoSens 1 (Aux1)</td>
<td>Off</td>
<td>Door</td>
</tr>
<tr>
<td>ErgoSens 2 (Aux2)</td>
<td>Off</td>
<td>Door</td>
</tr>
</tbody>
</table>

You can define the following parameters:

<table>
<thead>
<tr>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FixPcs</td>
<td>Emulates the same function key. Determines the reference unit weight with a defined, fixed number of pieces.</td>
</tr>
<tr>
<td>Result</td>
<td>Emulates the function key with the same name. Opens the result window.</td>
</tr>
<tr>
<td>M+</td>
<td>Emulates the function key with the same name. Takes over the current value.</td>
</tr>
<tr>
<td>OK</td>
<td>Emulates pressing of the button with the same name in the dialogs (however not in the menus) for confirmation of entries and actions.</td>
</tr>
</tbody>
</table>

Factory setting: SmartSens left and right configured for door operation (draft shield). Both ErgoSens deactivated, [Off].

17.2 Working with the Piece Counting application

Navigation: [Menu] > [Piececounting]

This section describes how to work with the Piececounting application. Among other things, you can determine a tare weight, change the resolution of the weighing result or work with identifications.

You are probably already familiar with these options from the Weighing application. They are therefore not described again here.
17.2.1 Simple piece counting

Initial settings

To carry out a simple piece counting, you must activate at least the following three function keys:

- **FixPcs** – Activate function keys.
- **VarPcs**
- **PcsWgt**

Also activate the data fields **PcsWgt** (Reference unit weight) and **RefPcs** (Reference unit quantity) so that the defined values will be displayed.

Determining the reference

Place the desired number of reference units on the weighing pan. Using these reference units, the balance measures the average piece weight. This serves as a basis for the piece counting.

If the number of reference units placed on the balance corresponds exactly to the number that is programmed for the function key **[FixPcs]**, tap it. As soon as the weighing result is stable, the measured average piece weight is accepted as a reference. The average weight of the reference units (the number of decimal points depends on the model) and the reference unit quantity appears in the data fields.

If a different number of reference units is placed on the balance, and it does not correspond to the function key **[FixPcs]**, e.g. 32 pieces, tap the function key **[VarPcs]** (variable unit quantity). It appears in the input field in which the number of pieces is typed. After confirming the unit quantity, the balance determines the reference. The average weight of the reference units and the reference unit quantity appear in the data fields.

If the piece weight is known, this can be entered directly. To do this, tap the function key **[PcsWgt]**. A data field appears in which the piece weight is typed in the desired unit. Since the balance does not have to determine a reference for this method, after confirming the piece weight, the result of the piece counting is displayed immediately (number of pieces currently placed on the balance). The entered reference unit weight and the reference unit quantity "1" (since you have entered the weight of an individual part) appear in the data fields.

Performing the piece counting

The measured single value can be printed out with the **[Print]** key.

- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press **[Print]**.

Note

If the weight of the piece on the balance is displayed instead of the unit quantity, tap the **[PCS]** unit. Tap the desired weighing unit from the selection window.

- Function keys are activated.
- Load the reference units on the weighing pan.
- Tap, e.g. **[FixPcs]**.
 - The measured average piece weight is saved as the reference.
- Place the pieces to be counted on the balance and tap the **[M+]** function key.
 - When the result is stable (the dashes disappear), it is entered in the statistics.
 - The protocol header and the result (single value) of the current weighing are printed.
- Tap **[Result]**.
 - The result window appears.
 - If the result window consists of several screen pages, paging between the individual pages can take place with the two arrow keys.
- Press **[Print]** to print the result protocol.
- Tap **[OK]** to exit the result window.
7 Tap [CL Result] to end the counting series and delete the memory for the next series.
 ⇒ A confirmation window appears.
8 To delete the statistics, confirm with [OK].
 ⇒ The statistics are deleted.
 ⇒ The function key is inactive and grayed.

17.2.2 Totalizing and acquiring statistics from piece counts

Initial settings
In order for you to totalize and acquire statistics, you must activate at least the following three function keys:

- [M+]: Enable function keys.
- [Result]:
- [CL Result]:

We also recommend activating the following two function keys. They allow you to delete incorrect values [CL Last] and to define the number of piece counts to be included in a series [Max n].

For optimal use of the statistics functions, a printer should be connected to the balance. If a printer is not connected, the four most important statistics information fields for your application should be activated (e.g. n, x, Min and Max).

- A printer is connected and activated as an output device in the peripheral device settings.
- To print out the settings, press [].

Procedure
If the number of piece counts for a series is specified, press the [Max n] function key and enter the number of counts (1 to 999). The series is terminated automatically after the last count has been completed. The result window is opened and the result protocol is printed. This function key is only active when no value is present in the statistics. If you enter 0 (zero) for [Max n], the series does not have a defined limit and you can statistically record a maximum of 999 piece counts.

When working with a weighing container, place the container on the balance and press the [→ T ←] key to tare the balance.

Alternatively you can use the tare memory or the automatic taring function. These functions are described in the instructions for the Weighing application.

Determine the reference with the desired method. Fixed reference unit quantity, variable reference unit quantity or entry of a known piece weight.

- Function keys are activated.
- The balance is tared [→ T ←].
1 Load the reference units on the weighing pan.
2 Tap, e.g. [VarPcs].
 ⇒ A numeric input window appears.
3 Enter the number of reference units and confirm with [OK].
4 Place the pieces to be counted on the balance and tap the [M+] function key.
 ⇒ When the result is stable (the dashes disappear), it is entered in the statistics.
 ⇒ The protocol header and the result (single value) of the current weighing are printed.
5 Remove the pieces from the first count.
6 Place the pieces for the second count on the balance and tap the [M+] function key.
7 Tap [Result].
 → The result window appears.
 If the result window consists of several screen pages, paging between the individual pages can take
place with the two arrow keys.
8 Press [Print] to print the result protocol.
9 Tap [OK] to exit the result window.
10 Tap [CL Result] to end the counting series and delete the memory for the next series.
 → A confirmation window appears.
11 To delete the statistics, confirm with [OK].
 → The statistics are deleted.
 → The function key is inactive and grayed.

Note
An error message is displayed if you tap the [M+] function key but no weight change has occurred. This
prevents you from accidentally acquiring the same result twice.
If the automatic weight entry function is activated, the [M+] key does not need to be pressed for the result to
be acquired. The value is automatically entered in the statistics.
If you have mistakenly saved an incorrect piece count result, you can use the [CL Last] function key to
delete it. It is only available if values are already present in the memory; otherwise the key is grayed out and
cannot be actuated. The key is deactivated after a result is deleted and is not activated again until the next
result has been entered in the statistics.

17.2.3 Counting to a nominal value

The Piececounting application provides additional functions that simplify counting to a defined nominal
value. You can use these functions for individual counts or for series counts with statistics. It is assumed
that the reference for the piece count has already been determined.

Initial settings
To enter the nominal value and the associated tolerance range, activate the function keys listed below. Also
activate the data fields with the same names so that the defined values will be displayed.

Nominal — Enable function keys.
+Tolerance
-Tolerance

We also recommend activating the Abs/Diff function key. This allows the results display to be switched at
any time, between the amount already weighed and the remaining amount still to be weighed until the
nominal value is reached.

Abs/Diff — Function key activation.

Procedure
Note
The function keys for entering the nominal value and the tolerance range are deactivated if values are
already present in the statistics. In this case, you must clear the statistics with the [CL Last] function key
before you can define the nominal value and the tolerance range.
The [PCS] unit is only available if a reference unit weight has already been determined.

1 Tap the [Nominal] function key.
 → A numeric input window appears.
2 Enter the required value.
 - If a weight corresponding to the nominal weight is already on the balance, it can be directly taken over
 by tapping the button with the balance icon.
 Check the weighing unit to the right of the nominal weight.
 A selection of available units, including [PCS] (pieces) can be displayed by tapping the weighing unit.
 Note
 Units are not converted automatically. When a value is entered in a unit, it is retained, even when the
 unit is changed.
3 Confirm with [OK] to activate the nominal weight.
4 Tap the [+Tolerance] and/or [-Tolerance] function key.
 ⇒ A numeric input window appears.
5 Enter the required value.
 Both tolerances are set to 2.5% by default. Instead of a percentage, an absolute tolerance can be
 entered in any unit, e.g. [PCS].
6 Confirm with [OK] to activate the tolerance.
 Note
 Piece counts outside the tolerance range are specifically marked with >T+ or <T- when single values are
 recorded.
 ⇒ The SmartTrac graphic weighing-in aid with tolerance marks to facilitate weighing-in to the nominal
 weight appears.
 ⇒ Samples can be roughly weighed until the lower tolerance limit is reached and subsequent additions
 made up to the nominal weight.

17.2.4 Reference optimization

Reference optimization leads to more precise results for piece counting. With each reference optimization,
the average piece weight (reference) is recalculated. Since the newly placed parts enlarge the basis for the
calculation, the reference and the result of the piece count will be more precise.

Determine the reference with the desired method (fixed or variable reference unit quantity). Reference
optimization can be carried out any number of times. The reference and the counting result will be more
precise after each optimization.

Note
Reference optimization is only possible if:
- The number of placed parts is greater than the reference unit quantity.
- The number of placed parts is not greater than twice the last saved reference unit quantity.
- **Fixed reference unit quantity** or **variable reference unit quantity** are used as a method for determining
 the reference. Reference optimization is not possible when entering a known reference unit weight
 (function key [PcsWgt]).

In the case of a series of piece counts, reference optimization is only possible before the result of the first
count is saved with the [M+] function key. The [RefOpt] function key is then grayed out and can no longer
be pressed, since changing the calculation basis (Reference unit weight) is not permitted during an ongoing
series.

The measured single value can be printed out with the [P] key.
- A printer is connected and activated as an output device in the peripheral device settings.
 - To print out the settings, press [P].
To use reference optimization, activate the following function key.

RefOpt − Activate function key.

- Function keys are activated.
- Statistics are deleted.
1 Load the reference units on the weighing pan.
2 Tap, e.g. [FixPcs].
 ⇒ The measured average piece weight is saved as the reference.
3 Place the pieces to be counted on the balance and tap the [RefOpt] function key.
 ⇒ When the weight is stable (dashes disappear), the weighed quantity is used as the new reference quantity. The reference unit weight is recalculated on this basis.
 ⇒ After reference optimization, the [RefOpt] function key remains inactive until further pieces are placed on the balance.
4 Place further pieces on the balance, tap the [RefOpt] function key.
 ⇒ The weighed quantity is used as the new reference quantity.
5 Tap [M+] to enter the result in the statistics.
 ⇒ The protocol header and the result (single value) of the current weighing are printed.
6 Tap [Result].
 ⇒ The result window appears.
 If the result window consists of several screen pages, paging between the individual pages can take place with the two arrow keys.
7 Press [Print] to print the result protocol.
8 Tap [OK] to exit the result window.
9 Tap [CL Result] to end the counting series and delete the memory for the next series.
 ⇒ A confirmation window appears.
10 To delete the statistics, confirm with [OK].
 ⇒ The statistics are deleted.
 ⇒ The function key is inactive and grayed.

17.2.5 Example protocol of a piece count with statistical values

The detail of a protocol depends on the selected protocol settings. Only application-specific information is shown in the example printout.

Note
The values for \(\bar{x} \), \(s \), Min, Max, Diff. and Sum are displayed in the current display unit; this does not necessarily have to be PCS (pieces).

Important information for the interpretation of recorded results
The \(\bar{x} \) and \(s \) values are calculated results that are shown with higher resolution than the individual measured values. The significance of the last decimal place cannot be assured with a relatively small measurement series (fewer than 10 or so measured values) with small weight differences.
Example: Printout

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>WeighBridge SNR</th>
<th>Terminal SNR</th>
<th>Nominal</th>
<th>+Tol</th>
<th>-Tol</th>
<th>Max n</th>
<th>NetPcs</th>
<th>RefPcs</th>
<th>PcsWgt</th>
<th>Max n</th>
<th>NetPcs</th>
<th>RefPcs</th>
<th>PcsWgt</th>
<th>Diff</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.Jul 2014</td>
<td>12:40</td>
<td>1234567890</td>
<td>1234567891</td>
<td>110.00</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>110</td>
<td>10</td>
<td>2.314</td>
<td>3</td>
<td>109</td>
<td>10</td>
<td>2.314</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>109</td>
<td>2.314 g</td>
<td></td>
<td>2.34%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>111.00</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>2.600</td>
<td></td>
</tr>
<tr>
<td>s.rel</td>
<td>2.34%</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Diff</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>333.00</td>
<td></td>
</tr>
<tr>
<td>SumPcs</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>>T+</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td><T-</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Signature

.................
18 Maintenance

18.1 Cleaning

Periodically clean the weighing pan, the drip tray, the housing, and the terminal of your balance using the brush supplied with it. The maintenance interval depends on your standard operating procedure (SOP).

Please observe the following notes:

⚠️ WARNING

Risk of electric shock
1. Disconnect the balance from the power supply prior to cleaning and maintenance.
2. Only use METTLER TOLEDO power cable, if these need to be replaced.
3. Ensure that no liquid comes into contact with the balance, terminal or AC adapter.
4. Do not open the balance, terminal or AC adapter.
 These contain no user-serviceable parts.

⚠️ CAUTION

Damage to balance
Under no circumstances use cleaning agents containing solvents or abrasive agents, as this can damage the terminal overlay.

Cleaning

Your balance is made from high quality, resistant materials and can therefore be cleaned with a commercially available, mild cleaning agent.

Note

All removable non-coated parts of the outer draft shield are dishwasher safe to 80 degrees.
1. To clean the weighing chamber thoroughly, move the draft shield glass panels (including intermediate shelf) away from the balance and remove them from their fastenings.
2. Carefully lift the front of the weighing pan and lift it out of the guide.
3. Remove the drip tray from the balance.
4. Ensure that these parts are correctly positioned when refitted.

Note

Contact a METTLER TOLEDO representative to find about the service options available – regular maintenance by an authorized service engineer will ensure consistent weighing accuracy over the long term and extend the service life of the balance.

18.2 Disposal

In conformance with the European Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE) this device may not be disposed of in domestic waste. This also applies to countries outside the EU, per their specific requirements.

Please dispose of this product in accordance with local regulations at the collecting point specified for electrical and electronic equipment. If you have any questions, please contact the responsible authority or the distributor from which you purchased this device. Should this device be passed on to other parties (for private or professional use), the content of this regulation must also be related.

Thank you for your contribution to environmental protection.
18.3 Firmware (Software) Updates

METTLER TOLEDO is continuously improving its balance firmware (software) for the benefit of customers. So that the customer can benefit quickly and easily from further developments, METTLER TOLEDO makes the latest firmware versions available on the Internet. The firmware made available on the Internet has been developed and tested by Mettler-Toledo GmbH using processes that meet the guidelines of ISO 9001. Mettler-Toledo GmbH does not, however, accept liability for consequences that may arise from using the firmware.

18.3.1 How it Works

For important balance information and updates, visit METTLER TOLEDO at:

www.mt.com

A program called e-Loader II will be downloaded together with the firmware update to your computer. This program can be used to transfer the firmware to the balance. Before transferring a firmware update to the balance, all balance settings can be backed up with e-Loader II.

If the selected update should include an application not described in these instructions (or one that has been updated in the meantime), the corresponding instructions can also be downloaded in Adobe Acrobat® PDF format.

Note

New applications may not be visible until the type data has been updated by a service engineer.

Requirements

Minimum requirements for downloading applications from the Internet and installing them on the balance are as follows:

- PC with one of the following Microsoft Windows® operating system:
 - Microsoft® Windows® XP Home or Professional with Service Pack 3 (32 bit).
 - Microsoft® Windows Vista® Home Premium, Business, Ultimate or Enterprise with Service Pack 2 (32 bit and 64 bit).
 - Microsoft® Windows 7 with Service Pack 1 Home Premium, Professional, Ultimate or Enterprise (32 bit and 64 bit).
- Internet connection and web browser (e.g. Internet Explorer).
- Connecting cable between PC and balance (e.g. No. 11101051 see section Accessories).
19 Troubleshooting

19.1 Error messages

The majority of error messages are displayed in plain text in the respective application accompanied by remedial instructions. Error messages of this type are self-explanatory and therefore are not mentioned below. The following error messages can be displayed instead of the weighing result.

Other error messages

If error messages are displayed other than those described below ("Error x"), contact a METTLER TOLEDO representative.

See also

Pipette configuration [130]

19.1.1 General error messages

<table>
<thead>
<tr>
<th>Error message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight display</td>
<td>Overload – the applied weight exceeds the weighing capacity of the balance.</td>
<td>Reduce the sample weight.</td>
</tr>
<tr>
<td>Weight display flashes/Out of zero range</td>
<td>Weight display flashes/Out of zero range – when one or several range limits are exceeded when the balance is switched on or zeroed. This message is always displayed when a weight is present in the weighing pan when the balance is switched on.</td>
<td>Remove the weight.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Taring or zeroing was aborted due to a lack of stability.</td>
<td>1. Close the draft shield doors and check the location (draft, vibrations). 2. Confirm with [OK]. 3. Repeat the procedure.</td>
</tr>
</tbody>
</table>

19.1.2 RFID error messages

<table>
<thead>
<tr>
<th>Error message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data could not be read from RFID tag. RFID unit not responding!</td>
<td>RFID unit failed to respond and was timed out. RFID unit incorrectly connected or configured.</td>
<td>1. Check that the RFID unit is correctly connected. 2. Check the RFID configuration</td>
</tr>
<tr>
<td>Data could not be written to RFID tag. RFID unit not responding!</td>
<td>See above</td>
<td>See above</td>
</tr>
<tr>
<td>Data could not be read from RFID tag. RFID error!</td>
<td>Hardware problem</td>
<td>Use a different RFID tag.</td>
</tr>
<tr>
<td>Error message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Data could not be written to RFID tag.</td>
<td>See above</td>
<td>See above</td>
</tr>
<tr>
<td>RFID tag is not compatible with this application.</td>
<td>RFID tag contains data of other applications, e.g. Pipette Check,</td>
<td>Use a different RFID tag.</td>
</tr>
<tr>
<td></td>
<td>Titration or Sample Track.</td>
<td></td>
</tr>
<tr>
<td>No RFID tag detected.</td>
<td>RFID tag removed from balance during read operation.</td>
<td>Place the beaker with the RFID tag on the balance again.</td>
</tr>
<tr>
<td></td>
<td>RFID tag removed from balance during write operation.</td>
<td>See above</td>
</tr>
</tbody>
</table>

For RFID configuration, see [Pipette configuration 130].

19.1.3 Dosing error messages

Error messages in the display draw your attention to incorrect operation or that the balance could not execute a procedure properly. The instruction are based that you work with a non hazardous substance.

19.1.3.1 Numbered error messages

<table>
<thead>
<tr>
<th>Error message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout</td>
<td>Communication:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Interfaces in general</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Autosampler</td>
<td>Check the wiring between the balance and the autosampler.</td>
</tr>
<tr>
<td></td>
<td>• Liquid module</td>
<td>Check the wiring between the balance and the liquid module.</td>
</tr>
<tr>
<td>Dosing head actuator blocked</td>
<td>Dosing head has become clogged or blocked mechanism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Check dosing head, that screw is rotatable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Remove the dosing head and tap it manually.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Try different settings for your powder in: Powder dosing mode or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tapper See [Configuring powder module 109].</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Try new dosing head or refill container.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the error occurs with a certain powder more than 2 times, the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>powder might be not applicable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 Check the system with the dosing head for powder test.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Contact your local METTLER TOLEDO service engineer.</td>
</tr>
<tr>
<td>Time out (Troubleshooting) No. 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing head actuator blocked</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Error message | Cause | Remedy
--- | --- | ---
Front door Timeout See manual (Troubleshooting) No. 7 | Door can’t be closed. | – Check that no obstacle stands before the balance.
Door not correctly adjusted. | – Check the settings for Front door See [Configuring the front door 110]
Connection interrupted. | – Contact your local METTLER TOLEDO service engineer. |
Auto sampler Error See manual (Troubleshooting) No. 8 | Blocked autosampler. | 1 Check that no obstacle is there.
2 Check that the weighing pan is mounted properly.
3 Check the proper fit of the magazines.
Connection interrupted. | – Contact your local METTLER TOLEDO service engineer. |
Leakage in air system See manual (Troubleshooting) No. 13 | Building up pressure takes too long. | 1 Check that no loose tube exists. Each tube has to be connected either to a bottle or to the balance.
2 Check tight fit of the cap and that the bottleneck is not broken.
3 Check proper fit of air tube fitting of the bottle and of the pump.
4 Check tight fit of the micro dispensing valve. |
No pressure release See manual (Troubleshooting) No. 16 | Bleeding valve blocked. | 1 Release pressure.
2 Contact your local METTLER TOLEDO service engineer. |
SafePos Error See manual (Troubleshooting) No. 27 | Dosing head is too low for higher sample vessel. | 1 Adjust the position with the dosing head height adjustment handle.
2 Tap function key [Setup] > [Start adjustments].
3 Follow the instructions. |

19.1.3.2 Substance

In most cases problems related to the substance occur if a particular limit has been reached:

Error message	Cause	Remedy
Powder flow too low | Dosing head ran out of powder while dosing. | 1 Check the quantity of powder remaining.
2 Try another dosing head.
Dosing head has become clogged. | 1 Tap the container on a table.
2 Try another dosing head.
Powder is compacting. | 1 Tap the container on a table.
2 Decrease the value for intensity of the tapper.
3 Try another dosing head. |
Troubleshooting Analytical Balances

Error message

<table>
<thead>
<tr>
<th>Message(s)</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| Expiry date reached | Substance has expired, i.e. the expiry date entered has passed. | 1. Replace the substance.
2. To prevent contamination, install and set up a new dosing head. |
| Please press Cancel to stop | | |
| Remaining quantity too low | Quantity of powder is insufficient for the next dosing cycle. | – Abort [C] or continue [Continue] the current dosing. |
| Please press Continue to proceed or Cancel to stop | On the initial filling you entered the quantity. After each dosing cycle the respective quantity is subtracted from this value. | **Note**
If you continue dosing you should be aware that the target weight may not be reached. |
| Retest date reached | Substance needs to be retested, i.e. the retest date you entered has been reached. | 1. Abort the current dosing.
2. Check the substance.
3. Enter a new retest date.
⇒ If you continue dosing instead, the message will re-appear upon every subsequent dosing. |
| Please press Continue to proceed or Cancel to stop | | |
| Liquid flow too low | Not enough liquid left in the bottle. | – Refill the bottle, see Handling of Bottle. |
| | Not enough liquid for dosing. | 1. Check for leaks.
2. Check that liquid dosing head is clean.
3. Clean it for example by purging, see Cleaning the Liquid Module. |

19.1.3.3 Hardware

<table>
<thead>
<tr>
<th>Error message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| No Quantos module found | Dosing is chosen as application but no Quantos device is connected to the XPE balance | • If you don’t want to use the application Dosing, choose another application.
• If you have a liquid module connected, make sure, it is wired correctly.
• If you have a powder module connected, contact your local METTLER TOLEDO service engineer. |
| Message(s) | | |
| Head dosage limit reached | Dose limit reached. | 1. Confirm with [C].
2. Touch [Info head].
3. Check Dose limit with Rem. dosages.
4. Check the dosing head and change dosing head if necessary. |
| Please press Cancel to stop | | |
| The value is too small! | Entered tolerance too small. | – Increase tolerance to achieve valid results. |
Error message | Cause | Remedy
---|---|---
Wrong head type mounted! | Wrong dosing application for the mounted dosing head. | 1. Check that the dosing head is installed properly.
2. - If you mounted the liquid dosing head, choose [Start] > [Solution] or [Liquid dosing].
- If you mounted the powder dosing head, choose [Start] > [Solid dosing] or [Solution].

19.2 Status messages/Status icons

<table>
<thead>
<tr>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| Automatic ProFACT Adjustment is currently not possible as the balance is busy. | 1. Unload the balance.
2. Do not select any key for 2 minutes. The display stabilizes.
⇒ The status icon extinguishes after successful adjustment. |
| A request for automatic adjustment with an external weight was defined in the system settings. | - Carry out the adjustment.
⇒ The status icon extinguishes after successful adjustment or if adjustment is declined. |
| A request for automatic testing of the adjustment with an external weight was defined in the system settings. | - Carry out the test.
⇒ The status icon extinguishes after a successful test or if the test is declined. |
| The MinWeigh function is active. This indicates that the minimum weight for the current tare was not yet reached. | - Ensure that the minimum weight is reached.
⇒ The status icon extinguishes. |
| The next test for the MinWeigh function is due. | - Contact a METTLER TOLEDO representative as soon as possible.
⇒ A service engineer will carry out the test as soon as possible. |
| The balance battery must be replaced. This battery ensures that the date and time are retained when the balance is disconnected from the power supply. | - Contact a METTLER TOLEDO representative as soon as possible.
⇒ The battery can be replaced by a service engineer. |
| The balance is due for a service. | - Contact a METTLER TOLEDO representative as soon as possible.
⇒ The balance can be serviced by a service engineer. |
| The built-in level sensor has detected that the balance is not correctly leveled. | - Immediately level the balance.
⇒ The status icon extinguishes as soon as the balance is correctly leveled. |
| A request for automatic performance of a task was defined in the system settings. | - Carry out the task.
⇒ The status icon extinguishes after the task is carried out. |
The Antistatic Kit is active, i.e. the ionizer is on. This icon only indicates that the Antistatic Kit is active, however this does not mean that the Antistatic Kit is actually switched on and ready to use.

- The control cable of the Antistatic Kit is connected to the balance and the balance is connected to the power supply and switched on.
 - For zeroing, taring and adjustment, the ionizer is deactivated and the status icon extinguishes as the ionizer could disturb these operations. When these operations have been completed, tap the [Ionizer] function key to activate the ionizer again.

The RFID unit is active. This icon appears when the RFID unit detects an RFID tag, provided you have activated the RFID unit in the system settings.

- The control cable of the RFID unit is connected to the balance and the balance is connected to the power supply and switched on.

Electrostatic detection is running. This icon appears when the electrostatic detection is running.

- The balance is connected to the power supply and switched on.

19.3 What to do if....?

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display remains dark after switching on</td>
<td>• It must be ensured that the terminal is correctly connected to the balance.</td>
</tr>
<tr>
<td></td>
<td>• Ensure that the balance is connected to the power supply and switched on.</td>
</tr>
<tr>
<td></td>
<td>• If the problem persists, contact a METTLER TOLEDO representative.</td>
</tr>
<tr>
<td>Keys and buttons do not respond</td>
<td>• Reboot the system by disconnecting and reconnecting it to the power supply.</td>
</tr>
<tr>
<td></td>
<td>• If the problem persists, contact a METTLER TOLEDO representative.</td>
</tr>
<tr>
<td>The connected printer does not print</td>
<td>• Ensure that the printer is switched on and activated in the menu. See [Peripherals] 57.</td>
</tr>
<tr>
<td></td>
<td>• Check the printer settings. See [Recommended printer settings] 270.</td>
</tr>
<tr>
<td>Incorrect characters are printed</td>
<td>• Change the bit/parity settings of the printer and balance to 8/No.</td>
</tr>
<tr>
<td></td>
<td>• Check that both devices have the same baud rate setting. See [Peripherals] 57.</td>
</tr>
<tr>
<td></td>
<td>• Use the appropriate character sets. See [Recommended printer settings] 270.</td>
</tr>
<tr>
<td>Unstable error appears after each StaticDetect measurement</td>
<td>• Ensure a strong stable surface free from all vibrations - especially low frequency vibrations.</td>
</tr>
<tr>
<td>Powder is compacting or powder flow too low.</td>
<td>• Tap the container on a table.</td>
</tr>
<tr>
<td></td>
<td>• Decrease the value for intensity of the tapper.</td>
</tr>
</tbody>
</table>
20 Technical Data

20.1 General data

CAUTION

Only use an approved AC adapter with a current-limited SELV output. Ensure correct polarity.

Power supply
AC adapter:
Primary: 100 – 240 V AC, -15%/+10%, 50/60 Hz
Secondary: 12 V DC ±3%, 2.5 A (with electronic overload protection)

Cable for AC adapter: 3-core, with country-specific plug
Balance power supply: 12 V DC ±3%, 2.25 A, maximum ripple: 80 mVpp

Protection and standards
Overvoltage category: II
Degree of pollution: 2
Protection: Protected against dust and water
Standards for safety and EMC: See Declaration of Conformity
Range of application: For use only in closed interior rooms

Environmental conditions
Height above mean sea level: Up to 4000 m
Ambient temperature: 5–40 °C
Relative air humidity: Max. 80% up to 31 °C, linearly decreasing to 50% at 40 °C, noncondensing
Warm-up time: At least 120 minutes after connecting the balance to the power supply; when switched on from standby-mode, the balance is ready for operation immediately

Materials
Housing: Die-cast aluminum, plastic, chrome steel and glass
Terminal: Die-cast zinc, chromed and plastics
SmartGrid: Chrome-Nickel-Molybdenum steel X2CrNiMo17

20.2 Explanatory notes for the METTLER TOLEDO AC adapter

The certified external power supply which conforms to the requirements for Class II double insulated equipment is not provided with a protective earth connection but with a functional earth connection for EMC purposes. This earth connection IS NOT a safety feature. Further information about conformance of our products can be found in the brochure "Declaration of Conformity" which is coming with each product.

In case of testing with regard to the European Directive 2001/95/EC the power supply and the balance have to be handled as Class II double insulated equipment.

Consequently an earth bonding test is not required. Similarly it is not necessary to carry out an earth bonding test between the supply earth conductor and any exposed metalwork on the balance.
Because the balance are sensitive to static charges a leakage resistor, typically 10 kΩ, is connected between the earth connector and the power supply output terminals. The arrangement is shown in the equivalent circuit diagram. This resistor is not part of the electrical safety arrangement and does not require testing at regular intervals.

Equivalent circuit diagram

20.3 Model-specific data

<table>
<thead>
<tr>
<th>Limit values</th>
<th>XPE206DR</th>
<th>XPE105</th>
<th>XPE105DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum capacity</td>
<td>220 g</td>
<td>120 g</td>
<td>120 g</td>
</tr>
<tr>
<td>Readability</td>
<td>0.01 mg</td>
<td>0.01 mg</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>Tare range (from...to)</td>
<td>0 ... 220 g</td>
<td>0 ... 120 g</td>
<td>0 ... 120 g</td>
</tr>
<tr>
<td>Maximum capacity in fine range</td>
<td>81 g</td>
<td>–</td>
<td>41 g</td>
</tr>
<tr>
<td>Readability in fine range</td>
<td>0.005 mg</td>
<td>–</td>
<td>0.01 mg</td>
</tr>
<tr>
<td>Repeatability (at nominal load)</td>
<td>0.03 mg (200 g)</td>
<td>0.03 mg (100 g)</td>
<td>0.06 mg (100g)</td>
</tr>
<tr>
<td>Repeatability (at low load)</td>
<td>0.015 mg (10 g)</td>
<td>0.015 mg (5 g)</td>
<td>0.05 mg (5 g)</td>
</tr>
<tr>
<td>Repeatability in fine range (at low load)</td>
<td>0.01 mg (10 g)</td>
<td>–</td>
<td>0.015 mg (5g)</td>
</tr>
<tr>
<td>Linearity deviation</td>
<td>0.1 mg</td>
<td>0.1 mg</td>
<td>0.15 mg</td>
</tr>
<tr>
<td>Eccentricity deviation (test load)</td>
<td>0.2 mg (100 g)</td>
<td>0.12 mg (50 g)</td>
<td>0.2 mg (50 g)</td>
</tr>
<tr>
<td>Sensitivity offset (test weight)</td>
<td>0.5 mg (200 g)</td>
<td>0.3 mg (100 g)</td>
<td>0.4 mg (100 g)</td>
</tr>
<tr>
<td>Sensitivity temperature drift</td>
<td>0.0001%/°C</td>
<td>0.0001%/°C</td>
<td>0.0001%/°C</td>
</tr>
<tr>
<td>Sensitivity stability</td>
<td>0.0001%/a</td>
<td>0.0001%/a</td>
<td>0.0001%/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typical values</th>
<th>XPE206DR</th>
<th>XPE105</th>
<th>XPE105DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability</td>
<td>sd 0.01 mg (10 g)</td>
<td>0.007 mg (5 g)</td>
<td>0.04 mg (5 g)</td>
</tr>
<tr>
<td>Repeatability in fine range</td>
<td>sd 0.005 mg (10 g)</td>
<td>–</td>
<td>0.007 mg (5 g)</td>
</tr>
<tr>
<td>Automated, repeatability</td>
<td>sd –</td>
<td>0.005 mg</td>
<td>–</td>
</tr>
<tr>
<td>Automated, repeatability in fine range</td>
<td>sd 0.0035 mg</td>
<td>–</td>
<td>0.005 mg</td>
</tr>
<tr>
<td>Linearity deviation</td>
<td>0.032 mg</td>
<td>0.03 mg</td>
<td>0.05 mg</td>
</tr>
<tr>
<td>Eccentricity deviation (test load)</td>
<td>0.06 mg (100 g)</td>
<td>0.04 mg (50 g)</td>
<td>0.05 mg (50 g)</td>
</tr>
<tr>
<td>Sensitivity offset (test weight)</td>
<td>0.1 mg (200 g)</td>
<td>0.06 mg (100 g)</td>
<td>0.1 mg (100 g)</td>
</tr>
<tr>
<td>Minimum weight (according to USP)</td>
<td>20 mg</td>
<td>14 mg</td>
<td>82 mg</td>
</tr>
<tr>
<td>Minimum weight (according to USP) in fine range</td>
<td>10 mg</td>
<td>–</td>
<td>14 mg</td>
</tr>
<tr>
<td>Automated, USP minimum weight (U=0.10%, k=2, 5% load)</td>
<td>7 mg</td>
<td>10 mg</td>
<td>10 mg</td>
</tr>
<tr>
<td>Minimum weight (U=1%, k=2)</td>
<td>2 mg</td>
<td>1.4 mg</td>
<td>8.2 mg</td>
</tr>
<tr>
<td>Minimum weight (U=1%, k=2) in fine range</td>
<td>1 mg</td>
<td>–</td>
<td>1.4 mg</td>
</tr>
<tr>
<td>Automated, minimum weight (U=1.0%, k=2, 5% load)</td>
<td>0.7 mg</td>
<td>1 mg</td>
<td>1 mg</td>
</tr>
<tr>
<td>Settling time</td>
<td>1.5 s</td>
<td>2.5 s</td>
<td>1.5 s</td>
</tr>
</tbody>
</table>
Settling time in fine range

| Balanced | 2.5 s | -- | 2.5 s |

Interface update rate

| Balanced | 23.1/s | 23.1/s | 23.1/s |

Usable height of draft shield

| Balanced | 235 mm | 235 mm | 235 mm |

Weight of balance

| Balanced | 10.4 kg | 10.4 kg | 10.4 kg |

Number of built-in reference weights

| Balanced | 2 | 2 | 2 |

Dimensions

| Balanced | 263 × 493 × 322 mm | 263 × 493 × 322 mm | 263 × 493 × 322 mm |

Weighing pan dimensions

| Balanced | 78 × 73 mm (W × D) | 78 × 73 mm (W × D) | 78 × 73 mm (W × D) |

Typical uncertainties and supplementary data

| Balanced | XPE206DR | XPE105 | XPE105DR |

Repeatability	sd	0.01 mg + 0.000005%·Rgr	0.007 mg + 0.000012%·Rgr	0.04 mg + 0.00001%·Rgr
Repeatability in fine range	sd	0.005 mg + 0.000002%·Rgr	--	0.007 mg + 0.000015%·Rgr
Automated, repeatability	sd	0.0035 mg + 0.000002%·Rgr	0.005 mg + 0.000002%·Rgr	--
Automated, repeatability in fine range	sd	0.0035 mg + 0.000002%·Rgr	0.005 mg + 0.000002%·Rgr	--
Differential linearity deviation	sd	√(5 pg·Rnt)	√(10 pg·Rnt)	√(25 pg·Rnt)
Differential eccentric load deviation	sd	0.00006%·Rnt	0.00008%·Rnt	0.0001%·Rnt
Sensitivity offset	sd	0.00006%·Rnt	0.00006%·Rnt	0.00006%·Rnt
Minimum weight (according to USP)	--	14 mg + 0.024%·Rgr	--	14 mg + 0.04%·Rgr
Minimum weight (according to USP) in fine range	10 mg + 0.004%·Rgr	--	14 mg + 0.04%·Rgr	
Automated, USP minimum weight (U=0.10%, k=2, 5% load)	7 mg + 0.004%·Rgr	10 mg + 0.024%·Rgr	10 mg + 0.04%·Rgr	
Minimum weight (U=1%, k=2)	--	1.4 mg + 0.0024%·Rgr	--	1.4 mg + 0.004%·Rgr
Minimum weight (U=1%, k=2) in fine range	1 mg + 0.0004%·Rgr	--	1 mg + 0.0004%·Rgr	
Automated, minimum weight (U=1.0%, k=2, 5% load)	0.7 mg + 0.0004%·Rgr	1 mg + 0.0024%·Rgr	1 mg + 0.004%·Rgr	
Weighing time	4 s	6 s	4 s	
Weighing time in fine range	6 s	--	6 s	

Weights for routine testing

<p>| OIML CarePac | ASTM CarePac |</p>
<table>
<thead>
<tr>
<th>Weights</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 g F2, 10 g F1</td>
<td>200 g 1, 10 g 1</td>
</tr>
<tr>
<td>#11123001</td>
<td>#1123101</td>
</tr>
<tr>
<td>100 g F2, 5 g E2</td>
<td>100 g 1, 5 g 1</td>
</tr>
<tr>
<td>#11123002</td>
<td>#1123102</td>
</tr>
</tbody>
</table>

sd = Standard deviation
Rnt = Net weight (sample weight)
Rgr = Gross weight
U = Year (annum)
a = Year (annum)
1) According to OIML R76
2) In the temperature range 10 ... 30 °C

| Balanced | XPE205 | XPE205DR | XPE204 |

Maximum capacity	220 g	220 g	220 g
Readability	0.01 mg	0.1 mg	0.1 mg
Tare range (from...to)	0 ... 220 g	0 ... 220 g	0 ... 220 g
Maximum capacity in fine range	--	81 g	--
Readability in fine range	--	0.01 mg	--
Repeatability (at nominal load) sd	0.03 mg (200 g)	0.06 mg (200 g)	0.07 mg (200 g)
Repeatability (at low load) sd	0.015 mg (10 g)	0.05 mg (10 g)	0.05 mg (10 g)
Repeatability in fine range (at low load) sd	--	0.015 mg (10 g)	--
Linearity deviation	0.1 mg	0.15 mg	0.2 mg
Eccentricity deviation (test load)	0.2 mg (100 g)	0.25 mg (100 g)	0.25 mg (100 g)
Technical Data

Analytical Balances

<table>
<thead>
<tr>
<th>Model</th>
<th>XPE205</th>
<th>XPE205DR</th>
<th>XPE204</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity offset (test weight)</td>
<td>0.5 mg (200 g)</td>
<td>0.5 mg (200 g)</td>
<td>0.6 mg (200 g)</td>
</tr>
<tr>
<td>Sensitivity temperature drift</td>
<td>0.0001%/?°C</td>
<td>0.0001%/?°C</td>
<td>0.0001%/?°C</td>
</tr>
<tr>
<td>Sensitivity stability</td>
<td>0.0001%/a</td>
<td>0.0001%/a</td>
<td>0.0001%/a</td>
</tr>
</tbody>
</table>

Typical values

<table>
<thead>
<tr>
<th></th>
<th>XPE205</th>
<th>XPE205DR</th>
<th>XPE204</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability</td>
<td>0.007 mg (10 g)</td>
<td>0.04 mg (10 g)</td>
<td>0.04 mg (10 g)</td>
</tr>
<tr>
<td>Repeatability in fine range</td>
<td>–</td>
<td>0.007 mg (10 g)</td>
<td>–</td>
</tr>
<tr>
<td>Automated, repeatability</td>
<td>0.005 mg</td>
<td>–</td>
<td>0.04 mg</td>
</tr>
<tr>
<td>Automated, repeatability in fine range</td>
<td>–</td>
<td>0.005 mg</td>
<td>–</td>
</tr>
<tr>
<td>Linearity deviation</td>
<td>0.03 mg</td>
<td>0.05 mg</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>Eccentricity deviation (test load)</td>
<td>0.06 mg (100 g)</td>
<td>0.08 mg (100 g)</td>
<td>0.08 mg (100 g)</td>
</tr>
<tr>
<td>Sensitivity offset (test weight)</td>
<td>0.12 mg (200 g)</td>
<td>0.12 mg (200 g)</td>
<td>0.12 mg (200 g)</td>
</tr>
<tr>
<td>Minimum weight (according to USP)</td>
<td>14 mg</td>
<td>–</td>
<td>82 mg</td>
</tr>
<tr>
<td>Minimum weight (according to USP) in fine range</td>
<td>–</td>
<td>14 mg</td>
<td>–</td>
</tr>
<tr>
<td>Automated, USP minimum weight (U=0.10%, k=2, 5% load)</td>
<td>10 mg</td>
<td>10 mg</td>
<td>82 mg</td>
</tr>
<tr>
<td>Minimum weight (U=1%, k=2)</td>
<td>1.4 mg</td>
<td>–</td>
<td>8.2 mg</td>
</tr>
<tr>
<td>Minimum weight (U=1%, k=2) in fine range</td>
<td>–</td>
<td>1.4 mg</td>
<td>–</td>
</tr>
<tr>
<td>Automated, minimum weight (U=1.0%, k=2, 5% load)</td>
<td>1 mg</td>
<td>1 mg</td>
<td>8.2 mg</td>
</tr>
<tr>
<td>Setting time</td>
<td>2.5 s</td>
<td>1.5 s</td>
<td>1.5 s</td>
</tr>
<tr>
<td>Setting time in fine range</td>
<td>–</td>
<td>2.5 s</td>
<td>–</td>
</tr>
<tr>
<td>Interface update rate</td>
<td>23 1/s</td>
<td>23 1/s</td>
<td>23 1/s</td>
</tr>
<tr>
<td>Usable height of draft shield</td>
<td>235 mm</td>
<td>235 mm</td>
<td>235 mm</td>
</tr>
<tr>
<td>Weight of balance</td>
<td>10.4 kg</td>
<td>10.4 kg</td>
<td>10.4 kg</td>
</tr>
<tr>
<td>Number of built-in reference weights</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th></th>
<th>XPE205</th>
<th>XPE205DR</th>
<th>XPE204</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance dimensions (W × D × H)</td>
<td>263 × 493 × 322 mm</td>
<td>263 × 493 × 322 mm</td>
<td>263 × 493 × 322 mm</td>
</tr>
<tr>
<td>Weighing pan dimensions</td>
<td>78 × 73 mm (W × D)</td>
<td>78 × 73 mm (W × D)</td>
<td>78 × 73 mm (W × D)</td>
</tr>
</tbody>
</table>

Typical uncertainties and supplementary data

<table>
<thead>
<tr>
<th></th>
<th>XPE205</th>
<th>XPE205DR</th>
<th>XPE204</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability</td>
<td>0.007 mg + 0.000006%-Rgr</td>
<td>–</td>
<td>0.04 mg + 0.0000015%-Rgr</td>
</tr>
<tr>
<td>Repeatability in fine range</td>
<td>–</td>
<td>0.007 mg + 0.000012%-Rgr</td>
<td>–</td>
</tr>
<tr>
<td>Automated, repeatability</td>
<td>0.005 mg</td>
<td>–</td>
<td>0.04 mg</td>
</tr>
<tr>
<td>Automated, repeatability in fine range</td>
<td>–</td>
<td>0.005 mg + 0.000012%-Rgr</td>
<td>–</td>
</tr>
<tr>
<td>Differential linearity deviation</td>
<td>√(5 pg·Rnt)</td>
<td>√(12 pg·Rnt)</td>
<td>√(20 pg·Rnt)</td>
</tr>
<tr>
<td>Differential eccentric load deviation</td>
<td>0.00006%-Rnt</td>
<td>0.00008%-Rnt</td>
<td>0.00008%-Rnt</td>
</tr>
<tr>
<td>Sensitivity offset</td>
<td>0.00006%-Rnt</td>
<td>0.00006%-Rnt</td>
<td>0.00006%-Rnt</td>
</tr>
<tr>
<td>Minimum weight (according to USP)</td>
<td>14 mg + 0.004%-Rgr</td>
<td>–</td>
<td>82 mg + 0.03%-Rgr</td>
</tr>
<tr>
<td>Minimum weight (according to USP) in fine range</td>
<td>–</td>
<td>14 mg + 0.024%-Rgr</td>
<td>–</td>
</tr>
<tr>
<td>Automated, USP minimum weight (U=0.10%, k=2, 5% load)</td>
<td>10 mg + 0.004%-Rgr</td>
<td>10 mg + 0.024%-Rgr</td>
<td>82 mg + 0.03%-Rgr</td>
</tr>
<tr>
<td>Minimum weight (U=1%, k=2)</td>
<td>1.4 mg + 0.0004%-Rgr</td>
<td>–</td>
<td>8.2 mg + 0.003%-Rgr</td>
</tr>
<tr>
<td>Minimum weight (U=1%, k=2) in fine range</td>
<td>–</td>
<td>1.4 mg + 0.0024%-Rgr</td>
<td>–</td>
</tr>
<tr>
<td>Automated, minimum weight (U=1.0%, k=2, 5% load)</td>
<td>1 mg + 0.0004%-Rgr</td>
<td>1 mg + 0.0024%-Rgr</td>
<td>8.2 mg + 0.003%-Rgr</td>
</tr>
<tr>
<td>Weighing time</td>
<td>6 s</td>
<td>4 s</td>
<td>4 s</td>
</tr>
<tr>
<td>Weighing time in fine range</td>
<td>–</td>
<td>6 s</td>
<td>–</td>
</tr>
</tbody>
</table>

Weights for routine testing
Technical Data

Analytical Balances

<table>
<thead>
<tr>
<th>OIML CarePac</th>
<th>ASTM CarePac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weights</td>
<td>Weights</td>
</tr>
<tr>
<td>200 g F2, 10 g F1</td>
<td>200 g F2, 10 g F1</td>
</tr>
<tr>
<td>#11123001</td>
<td>#11123001</td>
</tr>
</tbody>
</table>

sd = Standard deviation
Rnt = Net weight (sample weight)
Rgr = Gross weight
a = Year (annum)
1) According to OIML R76
2) In the temperature range 10…30 °C

Limit values

<table>
<thead>
<tr>
<th>XPE304</th>
<th>XPE504</th>
<th>XPE504DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum capacity</td>
<td>320 g</td>
<td>520 g</td>
</tr>
<tr>
<td>Readability</td>
<td>0.1 mg</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>Tare range (from…to)</td>
<td>0 … 320 g</td>
<td>0 … 520 g</td>
</tr>
<tr>
<td>Maximum capacity in fine range</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Readability in fine range</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Repeatability (at nominal load)</td>
<td>sd 0.1 mg (300 g)</td>
<td>0.12 mg (500 g)</td>
</tr>
<tr>
<td>Repeatability (at low load)</td>
<td>sd 0.08 mg (10 g)</td>
<td>0.08 mg (20 g)</td>
</tr>
<tr>
<td>Repeatability in fine range (at low load)</td>
<td>sd –</td>
<td>–</td>
</tr>
<tr>
<td>Linearity deviation</td>
<td>0.4 mg</td>
<td>0.4 mg</td>
</tr>
<tr>
<td>Eccentricity deviation (test load)</td>
<td>0.25 mg (100 g)</td>
<td>0.4 mg (200 g)</td>
</tr>
<tr>
<td>Sensitivity offset (test weight)</td>
<td>1.5 mg (300 g)</td>
<td>1.5 mg (500 g)</td>
</tr>
<tr>
<td>Sensitivity temperature drift</td>
<td>0.0001%/°C</td>
<td>0.0001%/°C</td>
</tr>
<tr>
<td>Sensitivity stability</td>
<td>0.0001%/a</td>
<td>0.0001%/a</td>
</tr>
</tbody>
</table>

Typical values

<table>
<thead>
<tr>
<th>XPE304</th>
<th>XPE504</th>
<th>XPE504DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability</td>
<td>sd 0.04 mg (10 g)</td>
<td>0.04 mg (20 g)</td>
</tr>
<tr>
<td>Repeatability in fine range</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Automated, repeatability</td>
<td>sd 0.04 mg</td>
<td>0.04 mg</td>
</tr>
<tr>
<td>Automated, repeatability in fine range</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Linearity deviation</td>
<td>0.12 mg</td>
<td>0.2 mg</td>
</tr>
<tr>
<td>Eccentricity deviation (test load)</td>
<td>0.08 mg (100 g)</td>
<td>0.12 mg (200 g)</td>
</tr>
<tr>
<td>Sensitivity offset (test weight)</td>
<td>0.36 mg (300 g)</td>
<td>0.3 mg (500 g)</td>
</tr>
<tr>
<td>Minimum weight (according to USP)</td>
<td>82 mg</td>
<td>82 mg</td>
</tr>
<tr>
<td>Minimum weight (according to USP) in fine range</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Automated, USP minimum weight</td>
<td>82 mg</td>
<td>82 mg</td>
</tr>
<tr>
<td>Minimum weight (U=0.1%, k=2, 5% load)</td>
<td>8.2 mg</td>
<td>8.2 mg</td>
</tr>
<tr>
<td>Minimum weight (U=1%, k=2)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Automated, minimum weight (U=1%, k=2, 5% load)</td>
<td>8.2 mg</td>
<td>8.2 mg</td>
</tr>
<tr>
<td>Settling time</td>
<td>1.5 s</td>
<td>1.5 s</td>
</tr>
<tr>
<td>Settling time in fine range</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Interface update rate</td>
<td>23 1/s</td>
<td>23 1/s</td>
</tr>
<tr>
<td>Usable height of draft shield</td>
<td>235 mm</td>
<td>235 mm</td>
</tr>
<tr>
<td>Weight of balance</td>
<td>10.4 kg</td>
<td>10.4 kg</td>
</tr>
<tr>
<td>Number of built-in reference weights</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Balance dimensions (W × D × H)</th>
<th>XPE304</th>
<th>XPE504</th>
<th>XPE504DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>263 × 493 × 322 mm</td>
<td>263 × 493 × 322 mm</td>
<td>263 × 493 × 322 mm</td>
<td></td>
</tr>
</tbody>
</table>

Typical uncertainties and supplementary data
<table>
<thead>
<tr>
<th></th>
<th>XPE304</th>
<th>XPE504</th>
<th>XPE504DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability</td>
<td>sd 0.06 mg + 0.000012%·Rgr</td>
<td>0.04 mg + 0.000008%·Rgr</td>
<td>–</td>
</tr>
<tr>
<td>Repeatability in fine range</td>
<td>sd –</td>
<td>–</td>
<td>0.04 mg + 0.00002%·Rgr</td>
</tr>
<tr>
<td>Automated, repeatability</td>
<td>sd 0.04 mg + 0.000012%·Rgr</td>
<td>0.04 mg + 0.000008%·Rgr</td>
<td>–</td>
</tr>
<tr>
<td>Automated, repeatability in fine range</td>
<td>sd –</td>
<td>–</td>
<td>0.04 mg + 0.00002%·Rgr</td>
</tr>
<tr>
<td>Differential linearity deviation</td>
<td>sd $\sqrt{(50 \text{ pg} \cdot \text{Rnt})}$</td>
<td>$\sqrt{(50 \text{ pg} \cdot \text{Rnt})}$</td>
<td>$\sqrt{(50 \text{ pg} \cdot \text{Rnt})}$</td>
</tr>
<tr>
<td>Differential eccentric load deviation</td>
<td>sd 0.00006%·Rnt</td>
<td>0.00006%·Rnt</td>
<td>0.00008%·Rnt</td>
</tr>
<tr>
<td>Sensitivity offset</td>
<td>sd 0.00012%·Rnt</td>
<td>0.00006%·Rnt</td>
<td>0.00008%·Rnt</td>
</tr>
<tr>
<td>Minimum weight (according to USP)</td>
<td>82 mg + 0.024%·Rgr</td>
<td>82 mg + 0.016%·Rgr</td>
<td>–</td>
</tr>
<tr>
<td>Minimum weight (according to USP) in fine range</td>
<td>–</td>
<td>–</td>
<td>820 mg + 0.04%·Rgr</td>
</tr>
<tr>
<td>Automated, USP minimum weight (U=0.10%, k=2, 5% load)</td>
<td>82 mg + 0.024%·Rgr</td>
<td>82 mg + 0.016%·Rgr</td>
<td>82 mg + 0.04%·Rgr</td>
</tr>
<tr>
<td>Minimum weight (U=1%, k=2)</td>
<td>8.2 mg + 0.0024%·Rgr</td>
<td>8.2 mg + 0.0016%·Rgr</td>
<td>–</td>
</tr>
<tr>
<td>Minimum weight (U=1%, k=2) in fine range</td>
<td>–</td>
<td>–</td>
<td>8.2 mg + 0.004%·Rgr</td>
</tr>
<tr>
<td>Automated, minimum weight (U=1.0%, k=2, 5% load)</td>
<td>8.2 mg + 0.0024%·Rgr</td>
<td>8.2 mg + 0.0016%·Rgr</td>
<td>8.2 mg + 0.004%·Rgr</td>
</tr>
<tr>
<td>Weighing time</td>
<td>4 s</td>
<td>4 s</td>
<td>3.5 s</td>
</tr>
<tr>
<td>Weighing time in fine range</td>
<td>–</td>
<td>–</td>
<td>4 s</td>
</tr>
</tbody>
</table>

Weights for routine testing

<table>
<thead>
<tr>
<th></th>
<th>OIML CarePac</th>
<th>ASTM CarePac</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weights</td>
<td>Weights</td>
</tr>
<tr>
<td></td>
<td>200 g F2, 10 g F1 #11123001</td>
<td>200 g l, 10 g l #11123101</td>
</tr>
<tr>
<td></td>
<td>#11123007</td>
<td>#11123101</td>
</tr>
<tr>
<td></td>
<td>500 g F2, 20 g F1 #11123007</td>
<td>500 g l, 20 g l #11123107</td>
</tr>
<tr>
<td></td>
<td>#11123007</td>
<td>#11123107</td>
</tr>
</tbody>
</table>

sd = Standard deviation
Rgr = Gross weight
Rnt = Net weight (sample weight)
a = Year (annum)
1) According to OIML R76
2) In the temperature range 10 … 30 °C
3) After putting into operation for the first time, with the self-adjustment function activated (ProFACT or FACT)
20.4 Dimensions

Dimensions in mm.

![Dimensions Diagram]
20.5 Interfaces

20.5.1 Specifications of RS232C

<table>
<thead>
<tr>
<th>Interface type: Voltage interface according to EIA RS-232C/DIN 66020 (CCITT V24/V.28)</th>
<th>Max. cable length: 15 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal level: Outputs:</td>
<td>Inputs:</td>
</tr>
<tr>
<td>+5 V ... +15 V (RL = 3 – 7 kΩ)</td>
<td>+3 V ... 25 V</td>
</tr>
<tr>
<td>−5 V ... −15 V (RL = 3 – 7 kΩ)</td>
<td>−3 V ... 25 V</td>
</tr>
<tr>
<td>Connector: Sub-D, 9-pole, female</td>
<td></td>
</tr>
<tr>
<td>Operating mode: Full duplex</td>
<td></td>
</tr>
<tr>
<td>Transmission mode: Bit-serial, asynchronous</td>
<td></td>
</tr>
<tr>
<td>Transmission code: ASCII</td>
<td></td>
</tr>
<tr>
<td>Baud rates: 600, 1200, 2400, 4800, 9600, 19200, 38400(^1) (firmware selectable)</td>
<td></td>
</tr>
<tr>
<td>Bits/parity: 7-bit/even, 7-bit/odd, 7-bit/none, 8-bit/none (firmware selectable)</td>
<td></td>
</tr>
<tr>
<td>Stop bits: 1 stop bit</td>
<td></td>
</tr>
<tr>
<td>Handshake: None, XON/XOFF, RTS/CTS (firmware selectable)</td>
<td></td>
</tr>
<tr>
<td>End-of-line: <CR><LF>, <CR>, <LF> (firmware selectable)</td>
<td></td>
</tr>
</tbody>
</table>

1) 38400 baud is only possible in special cases, such as:
- Weighing platform without terminal, or
- Weighing platform with terminal, only via the optional RS232C interface.

| Pin 2: Balance transmit line (TxD) |
| Pin 3: Balance receive line (RxD) |
| Pin 5: Ground signal (GND) |
| Pin 7: Clear to send (hardware handshake) (CTS) |
| Pin 8: Request to send (hardware handshake) (RTS) |

20.5.2 Specifications of "Aux" connection

You can connect the METTLER TOLEDO "ErgoSens" or an external switch to sockets "Aux 1" and "Aux 2". This allows you to start functions such as taring, zeroing, printing and others.

External connection

Connect: 3.5 mm stereo jack connector
Electrical data:
- Max. voltage: 12 V
- Max. current: 150 mA

Do not connect!

Connection contact
21 Modules, Accessories and Spare Parts

21.1 Modules

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid kit QLX45</td>
<td>30008618</td>
</tr>
<tr>
<td>Autosampler QS30</td>
<td>11141300</td>
</tr>
<tr>
<td>Powder module Q2</td>
<td>30005906</td>
</tr>
<tr>
<td>Liquid module</td>
<td></td>
</tr>
<tr>
<td>Pump module QL2</td>
<td>30008317</td>
</tr>
<tr>
<td>Liquid dosing head and bottle QLL1000</td>
<td>3008318</td>
</tr>
<tr>
<td>Integrable antistatic kit incl. pair of multiple point-electrode and power supply</td>
<td>11141829</td>
</tr>
<tr>
<td>Cable Box</td>
<td>11141845</td>
</tr>
</tbody>
</table>

21.2 Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printers</td>
<td></td>
</tr>
<tr>
<td>P-56RUE thermal printer with RS232, USB and ethernet connections, simple printouts, date and time, label printing (limited).</td>
<td>30094673</td>
</tr>
<tr>
<td>Paper roll, white (length: 27 m), set of 10 pcs</td>
<td>30094723</td>
</tr>
<tr>
<td>Paper roll, white, self-adhesive (length: 13 m), set of 10 pcs</td>
<td>30094724</td>
</tr>
<tr>
<td>Paper roll, white, self-adhesive labels (550 labels), set of 6 pcs</td>
<td>30094725</td>
</tr>
</tbody>
</table>
P-58RUE thermal printer with RS232, USB and ethernet connections, simple printouts, date and time, label printing, balance applications: statistics, formulation, totaling,
- Paper roll, white (length: 27 m), set of 10 pcs 30094723
- Paper roll, white, self-adhesive (length: 13 m), set of 10 pcs 30094724
- Paper roll, white, self-adhesive labels (550 labels), set of 6 pcs 30094725

RS-P42 printer with RS232C connection to instrument 00229265
- Paper roll, set of 5 pcs 00072456
- Paper roll, self-adhesive, set of 3 pcs 11600388
- Ribbon cartridge, black, set of 2 pcs 00065975

RS-P25 printer with RS232 connection to instrument 11124300
- Paper roll (length: 20 m), set of 5 pcs 00072456
- Paper roll (length: 13 m), self-adhesive, set of 3 pcs 11600388
- Ribbon cartridge, black, set of 2 pcs 00065975

RS-P26 printer with RS232 connection to instrument (with date and time) 11124303
- Paper roll (length: 20 m), set of 5 pcs 00072456
- Paper roll, self-adhesive (length: 13 m), set of 3 pcs 11600388
- Ribbon cartridge, black, set of 2 pcs 00065975

RFID reader

EasyScan Module, accessory for pipette check application. Reads and writes RFID tags. 30078900

SmartSample, accessory for titration application for transferring sample information from the balance to the titrator. Reads and writes RFID tags. The kit includes:
- EasyScan
- SmartSample drip tray
- SmartSample SmartGrid 30078901

EasyScan Flex, accessory for pipette check application. Reads and writes RFID tags. 30215407

Smart Tag

Set of 50 pieces 30101517
Set of 200 pieces 30101518
ErgoClips

Weighing kit for various weighing containers

- ErgoClip Basket 11106747
- ErgoClip Titration Basket 11106883
- ErgoClip Weighing Boat 11106748
- ErgoClip Round-Bottom Flask 11106746
- ErgoClip small Flask 11140180
- ErgoClip Filter holder 11140185
- ErgoClip Vial 30260822
- ErgoClip Stand 11140170
Analytical Balances

- ErgoClip Flask 11106764
- ErgoClip Tube 11106784
- ErgoClip Quantos 11141570
- ErgoClip Syringe 30008288
- Single-use aluminium weighing pans, 10 units 11106711
- SmardGrid cover, chromium-nickel steel 11106709
- SmartPrep™, single-use funnel for quick and easy sample preparation. For flask sizes 10/19, 12/21, 14/23. 50 pcs 30061260
- Grey drip tray 30038741
- MinWeigh door 11106749
Optional interfaces

- Second RS232C Interface 11132500
- Ethernet Interface for connection to an Ethernet network 11132515
- BT2 Option: Bluetooth Interface, single-point connection 30237796
- BT2 Paired Option: Bluetooth Interface for multipoint connection for up to 6 Bluetooth devices 30237797

Cables for RS232 interface

- RS9 – RS9 (m/f): connection cable for PC, length = 1 m 11101051
- RS9 – RS25 (m/f): connection cable for PC, length = 2 m 11101052
- RS232 - USB converter cable – Cable with converter to connect a balance (RS232) to a USB port 64088427

Cables for LocalCAN interface

- LC – RS9: Cable for connecting a PC with RS232C, 9-pin (f), length = 2 m 00229065
LC – RS25: Cable for connecting a printer or PC with RS232C, 25-pin (m/f), length = 2 m

LC – CL: Cable for connecting a device with METTLER TOLEDO CL interface (5-pin), length = 2 m

LC – LC2: Extension cable for LocalCAN, length = 2 m

LC – LC5: Extension cable for LocalCAN, length = 5 m

LC – LCT: Cable branch (T-connector) for LocalCAN

Cable, one-sided open (2-pin)

Cable between balance and AC adapter, length = 4 m

Sensors

ErgoSens, optical sensor for hands-free operation

Footswitches

Footswitch with selectable function for balances (Aux 1, Aux 2)
LC-FS foot switch with selectable function for balances with LocalCAN interface

Filling-process control

LV11 automatic feeder for automatic loading of small items on the balance
LV11 Draft shield door
SQC14 filling process control
 Compact instrument with printer for control of up to 16 articles
 Compact instrument with printer for control of up to 60 articles

SQC-XPE software
SQC-XPE, a standalone balance application, to automatically monitor, control and optimize filling processes.

AntiStatic kit
Compact Antistatic Kit. Eliminates the build-up of electrostatic charges on containers and samples.

Note For the operation of 2 compact Antistatic Kits, an additional AC adapter can be ordered.

Universal AntiStatic Kit complete (U-shaped), including electrode and power supply
Optional: Second U-electrode* for universal AntiStatic Kit
* Power supply for optional, second U-electrode (11107764)

Filter kit
Filter kit for, until 110 mm

Density determination
Density kit
Sinker for density of liquids in conjunction with density kit
Calibrated (sinker + certificate)
Recalibrated (new certificate)

Calibrated thermometer with certificate

Pipette calibration

Evaporation Trap, incl. adapter

Evaporation Trap large

1-channel suction pump complete
Hose 2 m for suction pump

Reagent reservoirs, 5 pcs.

Barometer

Calibrated thermometer with certificate

Calibry PC Software
Calibry Light; for single channel pipettes
Barcode reader

RS232C Barcode Reader

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS232 F cable</td>
<td>21901305</td>
</tr>
<tr>
<td>Null modem adapter</td>
<td>21900924</td>
</tr>
</tbody>
</table>

Plus one of the following:

- AC adapter 5 V for EU 21901370
- AC adapter 5 V for US 21901372
- AC adapter 5 V for GB 21901371
- AC adapter 5 V for AU 21901370
+ 71209966

RS232C Barcode Reader – Cordless

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cradle</td>
<td>21901300</td>
</tr>
<tr>
<td>RS232 F cable</td>
<td>21901305</td>
</tr>
<tr>
<td>Null modem adapter</td>
<td>21900924</td>
</tr>
</tbody>
</table>

Plus one of the following:

- AC adapter 12 V for EU 21901373
- AC adapter 12 V for US 21901375
- AC adapter 12 V for GB 21901374
- AC adapter 12 V for AU 21901373
+ 71209966

PS/2 Barcode Reader, without cable

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS/2 wedge single cable</td>
<td>21901307</td>
</tr>
</tbody>
</table>

PS/2Y Barcode Reader, without cable

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS/2 wedge twin (Y) cable</td>
<td>21901308</td>
</tr>
</tbody>
</table>

Anti-theft devices

- Steel cable 11600361

Protective covers

- Protective cover for terminal 30059776
Dust covers

Dust cover

Software

LabX direct balance (simple data transfer)

LabX balance express (standalone system)

LabX balance server (server edition)

LabX direct QuantosConnect

Freeweigh.Net

WeightLink

WeightLink DMC Scanner

WeightLink DMC Scanner + RS232 option

WeightLink CarePac

For example:

Weight 1: Nominal weight 200 g, Class F2 + Weight 2: Nominal weight 10 g, Class F1

30035838

11120340

11153120

11153121

30008323

21900895

30268560

30304696

30293476
Individual WeightLink Weights

For example:

10 g Class E2 30293505
10 g Class F1 30293564

Other WeightLink CarePacs and individual WeightLink weights are available under:

▶ www.mt.com/weightlink

Various

Intermediate shelf (delivered as standard with XPE206DR) 30096753

Terminal and printer stand, mounting on balance 11106730

Wall fixture for terminal 30138798

AC/DC adapter (without power cable) 100–240 V AC, 0.8 A, 50/60 Hz, 12 V DC 2.5 A 11107909

Country-specific 3-Pin power cable with grounding conductor.

- Power cable AU 00088751
- Power cable BR 30015268
- Power cable CH 00087920
- Power cable CN 30047293
- Power cable DK 00087452
- Power cable EU 00087925
- Power cable GB 00089405
- Power cable IL 00225297
- Power cable IN 11600569
- Power cable IT 00087457
- Power cable JP 11107881
- Power cable TH, PE 11107880
- Power cable US 00088668
- Power cable ZA 00089728
21.3 Spare parts

<table>
<thead>
<tr>
<th>No.</th>
<th>Designation</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Side panel</td>
<td>11106841</td>
</tr>
<tr>
<td>2</td>
<td>Top draft shield door</td>
<td>30096752</td>
</tr>
<tr>
<td>3</td>
<td>Front glass panel</td>
<td>11106843</td>
</tr>
<tr>
<td>4</td>
<td>SmartGrid</td>
<td>11106333</td>
</tr>
<tr>
<td>5</td>
<td>Drip tray with "StaticDetect"</td>
<td>30067297</td>
</tr>
<tr>
<td>6</td>
<td>Terminal support</td>
<td>30059773</td>
</tr>
<tr>
<td>7</td>
<td>Foot screw</td>
<td>30072531</td>
</tr>
<tr>
<td>8</td>
<td>Clip</td>
<td>11106511</td>
</tr>
<tr>
<td></td>
<td>Brush</td>
<td>00071650</td>
</tr>
<tr>
<td></td>
<td>Terminal complete with firmware</td>
<td>30087553</td>
</tr>
<tr>
<td>No.</td>
<td>Designation</td>
<td>Part No.</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Packaging, complete</td>
<td>30096766</td>
</tr>
<tr>
<td></td>
<td>Export box</td>
<td>30087807</td>
</tr>
</tbody>
</table>
22 Appendix

22.1 MT-SICS interface commands and functions
Many of the instruments and balances used have to be capable of integration in a complex computer or data acquisition system.
To enable you to integrate balances in your system in a simple manner and utilize their capabilities to the full, most balance functions are also available as appropriate commands via the data interface.
All new METTLER TOLEDO balances launched on the market support the standardized command set "METTLER TOLEDO Standard Interface Command Set" (MT-SICS). The commands available depend on the functionality of the balance.
For further information please contact your METTLER TOLEDO representative.
For further information please refer to the Reference Manual MT-SICS downloadable from the Internet under www.mt.com/xpe-analytical

22.2 Procedure for certified balances

Preface
Certified balances are subject to the national, legal requirements of "non-automatic balances".

Switching on the balance
- Switching on
 - Immediately after being switched on, the balance displays 0.000.. g.
 - The balance is always started up with the "Factory setting" unit.
- Switch-on range
 - At maximum 20% of the type load, otherwise overload is displayed (OIML R76 4.5.1).
- Stored value as switch-on zero point
 - It is not permissible to use a stored value as a switch-on zero point; the MT-SICS command is not available (OIML R76 T.5.2).

Display
- Display of the weight value
 - The "e" certification value is always shown in the display and is specified at the model designation plate (OIML R76 T.3.2.3 and 7.1.4).
 - If the display increment is lower than the "e" certification value, this is variably displayed for the net, gross and weighed tare. (Graying of the digits or certification brackets) (OIML R76 T.2.5.4 and 3.4.1).
- In accordance with guidelines, the tested display increment (certification value) is never lower than 1 mg (OIML R76 T.3.4.2).
- At balances with \(d = 0.1 \) mg, the digits below 1 mg are displayed in gray. These digits in brackets are printed. In accordance with legal metrology requirements, this illustration does not affect the accuracy of the weighing results.
- Units of measurement
 - The display and info unit are firmly set to g or mg (depending on the model).
 - The following applies for the "Custom unit":
 - No certification brackets.
 - The following names are blocked, this applies to upper and lower case letters.
 - All official units (g, kg, ct etc.).
 - c, ca, car, cm, crt, cart, kt, gr, gra, gram, grm, k, kilo, to, ton.
 - All names with "o" which can be replaced by a zero (Oz, Ozt etc.).
- Identification of the weight display
Gross, net, tare and other weight values are accordingly marked (OIML R76 4.6.5).
- Net for net when a tare value has been used.
- B or G for gross.
- T for the weighed tare.
- PT for the specified tare.
- * or diff for the difference between the net or gross.

- **Info field**
 - The info weight value is handled metrologically in the same way as the weight value in the main display.

Printout (OIML R76 4.6.11)
- If a tare value is entered manually (PreTare), the PreTare value is always printed along with the net value (PT 123.45 g).
- The printed weight values are identified in the same way as the weight value on the display.
 I.e. N, B or G, T, PT, diff or *, with differentiation.

Example:

Single-range balance.

N 123.4[5] g
PT 10.00 g ➔ for PreTare
G 133.4[5] g

DR balance with 100.00 g fine range.

N 80.4[0] g
T 22.5[6] g ➔ for weighed tare
G 102.9[] g

Balance functions

- **Reset to zero**
 - The zero range is limited to a maximum of ± 2% of the full load (OIML R76 4.5.1).

- **Tare**
 - No negative tare values are permitted.
 - Tare immediate (TI) is not permitted, the MT-SICS TI command is not available (OIML R76 4.6.4).

- **1/xd**
 - $e = d$
 The 1/xd switchover is not permitted (OIML R76 3.1.2).
 - $e = 10d$
 This is only permitted in the case of the 1/10d switchover.
 - $e = 100d$
 Only the 1/10d and 1/100d switchover are permitted.

22.3 Recommended printer settings

English, German, French, Spanish, Italian, Polish, Czech, Hungarian

<table>
<thead>
<tr>
<th>Printer</th>
<th>Balance</th>
<th>Balance/Printer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Char Set</td>
<td>Char Set</td>
</tr>
<tr>
<td>RS-P25/26/28</td>
<td>Ansi/Win Latin 1</td>
<td>Ansi/Win</td>
</tr>
<tr>
<td>P-56RUE</td>
<td>Ansi/Win Latin 1</td>
<td>Ansi/Win</td>
</tr>
</tbody>
</table>
Russian

<table>
<thead>
<tr>
<th>Printer</th>
<th>Balance</th>
<th>Balance/Printer</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-P25/26/28</td>
<td>IBM/DOS</td>
<td>IBM/DOS</td>
</tr>
<tr>
<td>P-56RUE, P-58RUE</td>
<td>IBM/DOS</td>
<td>Cyrillic</td>
</tr>
<tr>
<td>RS-P42</td>
<td></td>
<td>Cyrillic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Char Set</th>
<th>Char Set</th>
<th>Baud rate</th>
<th>Bit/Parity</th>
<th>Stop bits</th>
<th>Handshake</th>
<th>End of Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-P25/26/28</td>
<td>IBM/DOS</td>
<td>Cyrillic</td>
<td>9600</td>
<td>8/No</td>
<td>1</td>
<td>Xon/Xoff</td>
<td><CR><LF></td>
</tr>
<tr>
<td>P-56RUE, P-58RUE</td>
<td>IBM/DOS</td>
<td>Cyrillic</td>
<td>9600</td>
<td>8/No</td>
<td>1</td>
<td>Xon/Xoff</td>
<td><CR><LF></td>
</tr>
<tr>
<td>RS-P42</td>
<td>Cyrillic</td>
<td>Cyrillic</td>
<td>1200</td>
<td>8/No</td>
<td>1</td>
<td>None</td>
<td><CR><LF></td>
</tr>
</tbody>
</table>

1) Printer settings not available.

Chinese

<table>
<thead>
<tr>
<th>Printer</th>
<th>Balance</th>
<th>Balance/Printer</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-P25/26/28</td>
<td>Ansi/Win</td>
<td></td>
</tr>
<tr>
<td>P-56RUE, P-58RUE</td>
<td>Ansi/Win</td>
<td></td>
</tr>
<tr>
<td>RS-P42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Char Set</th>
<th>Char Set</th>
<th>Baud rate</th>
<th>Bit/Parity</th>
<th>Stop bits</th>
<th>Handshake</th>
<th>End of Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-P25/26/28</td>
<td>Ansi/Win</td>
<td>Latin 1</td>
<td>9600</td>
<td>8/No</td>
<td>1</td>
<td>Xon/Xoff</td>
<td><CR><LF></td>
</tr>
<tr>
<td>P-56RUE, P-58RUE</td>
<td>Ansi/Win</td>
<td>Latin 1</td>
<td>9600</td>
<td>8/No</td>
<td>1</td>
<td>Xon/Xoff</td>
<td><CR><LF></td>
</tr>
<tr>
<td>RS-P42</td>
<td>Latin 1</td>
<td>Latin 1</td>
<td>1200</td>
<td>8/No</td>
<td>1</td>
<td>None</td>
<td><CR><LF></td>
</tr>
</tbody>
</table>

1) Required font for this language not available.

Japanese

<table>
<thead>
<tr>
<th>Printer</th>
<th>Balance</th>
<th>Balance/Printer</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-P25/26/28</td>
<td>Ansi/Win</td>
<td></td>
</tr>
<tr>
<td>P-56RUE, P-58RUE</td>
<td>Ansi/Win</td>
<td></td>
</tr>
<tr>
<td>RS-P42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Char Set</th>
<th>Char Set</th>
<th>Baud rate</th>
<th>Bit/Parity</th>
<th>Stop bits</th>
<th>Handshake</th>
<th>End of Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-P25/26/28</td>
<td>Ansi/Win</td>
<td>Japanese</td>
<td>9600</td>
<td>8/No</td>
<td>1</td>
<td>Xon/Xoff</td>
<td><CR><LF></td>
</tr>
<tr>
<td>P-56RUE, P-58RUE</td>
<td>Ansi/Win</td>
<td>Japanese</td>
<td>9600</td>
<td>8/No</td>
<td>1</td>
<td>Xon/Xoff</td>
<td><CR><LF></td>
</tr>
<tr>
<td>RS-P42</td>
<td>Japanese</td>
<td>Japanese</td>
<td>1200</td>
<td>8/No</td>
<td>1</td>
<td>None</td>
<td><CR><LF></td>
</tr>
</tbody>
</table>

1) Printer settings not available.

Katakana

<table>
<thead>
<tr>
<th>Printer</th>
<th>Balance</th>
<th>Balance/Printer</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-P25/26/28</td>
<td>Ansi/Win</td>
<td></td>
</tr>
<tr>
<td>P-56RUE, P-58RUE</td>
<td>Ansi/Win</td>
<td></td>
</tr>
<tr>
<td>RS-P42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Char Set</th>
<th>Char Set</th>
<th>Baud rate</th>
<th>Bit/Parity</th>
<th>Stop bits</th>
<th>Handshake</th>
<th>End of Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-P25/26/28</td>
<td>Ansi/Win</td>
<td>Japanese</td>
<td>9600</td>
<td>8/No</td>
<td>1</td>
<td>Xon/Xoff</td>
<td><CR><LF></td>
</tr>
<tr>
<td>P-56RUE, P-58RUE</td>
<td>Ansi/Win</td>
<td>Japanese</td>
<td>9600</td>
<td>8/No</td>
<td>1</td>
<td>Xon/Xoff</td>
<td><CR><LF></td>
</tr>
<tr>
<td>RS-P42</td>
<td>Japanese</td>
<td>Japanese</td>
<td>1200</td>
<td>8/No</td>
<td>1</td>
<td>None</td>
<td><CR><LF></td>
</tr>
</tbody>
</table>

1) Printer settings not available.

2) Required font for this language not available.
Glossary

Actual value
- Weight from the weight certificate of a test weight.

Actual weight
- The actual recorded weight of an external test weight. Irrespective of balance model.

Adjustment
- Adjusts the balance sensitivity. For this purpose, at least one reference weight is placed on the weighing pan either manually or motorized. This is weighed and the indicated weight is stored. The sensitivity of the balance is subsequently corrected by the required amount.

Adjustment weight
- External test weight for adjustment.

Calibration
- Verification of the test weight with the issuance of a certificate.

Control limit
- Tolerance of a process with respect to its set value. Exceeding the tolerance is a violation of quality requirements and therefore requires a correction of the process.

Eccentric load deviation
- Deviation of weight indications caused by eccentric loads.

Eccentric load test
- The purpose of the EC method (eccentric load test) is to ensure that every eccentric load deviation is within the necessary user SOP tolerances. The result corresponds to the highest of the 4 determined eccentric load deviations.

External adjustment weight
- External test weight for adjustment.

External test weight
- Traceable weight for adjustment or testing.

External test weight
- External test weight for testing the adjustment.

FACT
- FACT (Fully Automatic Calibration Technology) adjusts the balance based on a preselected temperature criterion fully automatically.

GWP History
- History of test sequences carried out.

GWP Test Manager
- List of safety functions for XS/XP balances. The balance provides active support with test requests and previously defined guided sequences.

GWP® Verification
- Service providing a personalized document with precise suggestions for routine balance testing: • how should the balance be tested and how often • which weights should be used • which tolerances are appropriate

Internal adjustment weight
- Built-in weight for adjustment.

Internal test weight
- Built-in weight for testing the adjustment.

Internal weight
- Built-in weight.

Method
- A method describes the type of test to be carried out and defines the main purpose of a test sequence. The weights to be used and corresponding test or method tolerances must be defined as part of the method.

Method tolerances
- Method result deviation tolerance limit.

Minimum weight
- Minimum weight required for weighing with relative accuracy (MinWeigh).

ProFACT
- ProFACT (Professional Fully Automatic Calibration Technology) adjusts the balance based on a preselected temperature criterion fully automatically.

Repeatability
- The capability of a balance to display corresponding weights with repeated weighings of the same object in the same manner under the same conditions.

Repeatability test
- Verification of the repeatability.

Result tolerances
- The same as method tolerance.

Routine test
- Test carried out routinely.
<table>
<thead>
<tr>
<th>Routine test</th>
<th>Performance of different (routine) tests for testing the balance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>A change in weight divided by the causal change in load.</td>
</tr>
<tr>
<td>Sensitivity test</td>
<td>Sensitivity verification.</td>
</tr>
<tr>
<td>Task</td>
<td>Tasks define when a test sequence must be carried out and how it is started and, for XP balances, who should carry out the test sequence. Before a task can be defined, the test sequence must already be defined.</td>
</tr>
<tr>
<td>Test</td>
<td>Collective term for testing a single function or an entire device.</td>
</tr>
<tr>
<td>Test history</td>
<td>Record of test results saved in a special fail-safe memory. The options in the test history allow the selection of results for documentation or printing.</td>
</tr>
<tr>
<td>Test sequence</td>
<td>Describes the type of test (method) and the weight with which this test must be carried out. It also defines the balance behavior if the test is not passed.</td>
</tr>
<tr>
<td>Test tolerances</td>
<td>Weight tolerance deviation limit for testing.</td>
</tr>
<tr>
<td>Test weight</td>
<td>An external weight used as a reference weight.</td>
</tr>
<tr>
<td>Testing the adjustment</td>
<td>According to GWP Test Manager nomenclature, corresponds to a sensitivity test.</td>
</tr>
<tr>
<td>Warning limit</td>
<td>An upper or lower limit, which if exceeded or not reached, makes more stringent process monitoring necessary.</td>
</tr>
<tr>
<td>Weight tolerances</td>
<td>a) Tolerances of certified test weights or b) Tolerances relating to a weighed weight (e.g. tare weight).</td>
</tr>
</tbody>
</table>
Index

A

AC adapter 27, 248
Access rights 60, 62
Acoustic signal 72
Actual value 40
Additive mode 176
Additive weighing 176
Adjustment 38, 39, 51, 98, 99
Adjustment data 54
Adjustment records 101
Adjustment report 55
Adjustment sequence 52
Adjustment with an external test weight 52
Adjustment with external test weight 99
Adjustment with internal weight 99
Administrator 60, 61
Advanced options 51
Ambient conditions 67
Antistatic kit 93
Application 13, 77, 125, 136
Applications 18, 65
Application-specific settings
 Configuration 19
Assembling the balance 23
Attempt 49
Automatic taring function 94
Automatic taring function 90
Automatic weight entry 173, 230
Automatic zero correction 68
Automatic zeroing 184
AutoZero
 Automatic zero correction 68
Aux connections 255
Aux. liquid 154, 160, 164

B

Backspace 20
Balance functions 270
Balance information 55
Balance settings 61
Barcode 207
Barcode data 207
Barcode data 87
Barcode reader 87
Battery replacement 47

Beep 72
Beep volume 72
Below-the-balance weighing 30
Blocks the balance 52
Buttons 9

C

Certificate number 40
Certified balances 269
Change password 63
Changing a password 61
Class 40
Cleaning 240
Clear value 218
Clear values 218
Color display of the weighing result 73
Color selection 71
Component database 201
Component database 189, 190, 196
Components 189, 190, 201
Configuration
 Application-specific settings 19
Connecting the balance 27
Connecting to power supply 27
Copy data 151
Copy tare 218
Counting 236

D

Data output 86
Data stored in dosing head 151
Date 15, 56
Defining a new series 208
Deleting a series 209
Density application 153, 160
Density determination 153, 154, 156, 160, 166
Density determination method 154
Density kit 153
Density of liquids 169
Density of solids 168
Density statistics 166
Density table for distilled water 169
Density table for ethanol 170
Determination of the density of liquids 161, 163
Determination of the density of non-porous solids 160
Determination of the density of pasty substances 162
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of the density of porous solids</td>
<td>164</td>
</tr>
<tr>
<td>Dialog language</td>
<td>60, 69</td>
</tr>
<tr>
<td>Differential weighing</td>
<td>202, 204, 207, 210, 211</td>
</tr>
<tr>
<td>Differential weighing application</td>
<td>202, 210</td>
</tr>
<tr>
<td>Differential weighing methods</td>
<td>210</td>
</tr>
<tr>
<td>Dimensions</td>
<td>254</td>
</tr>
<tr>
<td>Display</td>
<td>15, 269</td>
</tr>
<tr>
<td>large</td>
<td>16</td>
</tr>
<tr>
<td>Display brightness</td>
<td>71</td>
</tr>
<tr>
<td>Display color</td>
<td>71</td>
</tr>
<tr>
<td>Display of the weight value</td>
<td>269</td>
</tr>
<tr>
<td>Display statistical values</td>
<td>172</td>
</tr>
<tr>
<td>Display unit</td>
<td>222, 230</td>
</tr>
<tr>
<td>Disposal</td>
<td>240</td>
</tr>
<tr>
<td>Door function</td>
<td>70</td>
</tr>
<tr>
<td>Doors</td>
<td>69</td>
</tr>
<tr>
<td>Dosing Application</td>
<td>108</td>
</tr>
<tr>
<td>Dosing head</td>
<td>151</td>
</tr>
<tr>
<td>Draft shield intermediate shelf</td>
<td>26</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EasyScan</td>
<td>134</td>
</tr>
<tr>
<td>EC method</td>
<td>43, 104</td>
</tr>
<tr>
<td>Eccentric load deviation</td>
<td>43, 104</td>
</tr>
<tr>
<td>Eccentric load test</td>
<td>43, 104</td>
</tr>
<tr>
<td>Editing series</td>
<td>209</td>
</tr>
<tr>
<td>Electrostatic detection</td>
<td>91</td>
</tr>
<tr>
<td>e-Loader II</td>
<td>241</td>
</tr>
<tr>
<td>Energy saving function</td>
<td>56</td>
</tr>
<tr>
<td>Environmental conditions</td>
<td>248</td>
</tr>
<tr>
<td>ErgoSens</td>
<td>90, 121, 159, 188, 223, 232, 255</td>
</tr>
<tr>
<td>Error</td>
<td></td>
</tr>
<tr>
<td>Instrument</td>
<td>246</td>
</tr>
<tr>
<td>Substance</td>
<td>244</td>
</tr>
<tr>
<td>Error instructions</td>
<td>42</td>
</tr>
<tr>
<td>Error messages</td>
<td>242, 243</td>
</tr>
<tr>
<td>Example log with statistical values</td>
<td>181</td>
</tr>
<tr>
<td>Example of a differential weighing protocol</td>
<td>217</td>
</tr>
<tr>
<td>Example protocol</td>
<td>132, 166, 181, 200, 217, 226, 238</td>
</tr>
<tr>
<td>Example protocol of a density determination</td>
<td>166</td>
</tr>
<tr>
<td>Example protocol of a piece count with statistical values</td>
<td>239</td>
</tr>
<tr>
<td>Example protocol of a pipette check</td>
<td>133</td>
</tr>
<tr>
<td>External test weight</td>
<td>52, 53</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory settings</td>
<td>61, 73</td>
</tr>
<tr>
<td>Firmware</td>
<td>17</td>
</tr>
<tr>
<td>Firmware update</td>
<td>241</td>
</tr>
<tr>
<td>Footer</td>
<td>82</td>
</tr>
<tr>
<td>Formulae</td>
<td>168, 219</td>
</tr>
<tr>
<td>Formulas</td>
<td>182</td>
</tr>
<tr>
<td>Formulation</td>
<td>183, 189, 190, 196, 201</td>
</tr>
<tr>
<td>Formulation application</td>
<td>183, 195</td>
</tr>
<tr>
<td>Formulation database</td>
<td>190, 196</td>
</tr>
<tr>
<td>Formulation identifications</td>
<td>188</td>
</tr>
<tr>
<td>Formulation protocol information</td>
<td>186</td>
</tr>
<tr>
<td>Formulation with % components</td>
<td>195</td>
</tr>
<tr>
<td>Formulations with fixed components</td>
<td>193</td>
</tr>
<tr>
<td>Free formulation</td>
<td>196</td>
</tr>
<tr>
<td>Free weighing unit</td>
<td>81</td>
</tr>
<tr>
<td>Fully automatic adjustment</td>
<td>99</td>
</tr>
<tr>
<td>Function key</td>
<td>228</td>
</tr>
<tr>
<td>Function keys</td>
<td>15, 77, 79, 99, 119, 125, 136, 147, 155, 160, 161, 162, 163, 165, 172, 184, 196, 203, 211, 220, 228</td>
</tr>
<tr>
<td>Gamma sphere</td>
<td>153, 162, 169</td>
</tr>
<tr>
<td>General safety information</td>
<td>10</td>
</tr>
<tr>
<td>Glass draft shield</td>
<td>28</td>
</tr>
<tr>
<td>Glass draft shield doors</td>
<td>69</td>
</tr>
<tr>
<td>Good Weighing Practice</td>
<td>38</td>
</tr>
<tr>
<td>GWP history</td>
<td>42, 54</td>
</tr>
<tr>
<td>GWP®</td>
<td>38</td>
</tr>
<tr>
<td>GWP® Verification</td>
<td>38</td>
</tr>
<tr>
<td>Hands-free sensors</td>
<td>90, 121</td>
</tr>
<tr>
<td>Hanger opening</td>
<td>153</td>
</tr>
<tr>
<td>Head information</td>
<td>151</td>
</tr>
<tr>
<td>Header</td>
<td>82</td>
</tr>
</tbody>
</table>

I

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>20, 60</td>
</tr>
<tr>
<td>Identification</td>
<td>55</td>
</tr>
<tr>
<td>Identification number</td>
<td>40</td>
</tr>
<tr>
<td>Identification of the weight display</td>
<td>269</td>
</tr>
<tr>
<td>Identifications</td>
<td>87, 95, 135, 188</td>
</tr>
<tr>
<td>Activate</td>
<td>87</td>
</tr>
<tr>
<td>Define</td>
<td>87</td>
</tr>
<tr>
<td>Info field</td>
<td>87, 270</td>
</tr>
<tr>
<td>Info Unit</td>
<td>230</td>
</tr>
<tr>
<td>Information fields</td>
<td>16, 80, 160, 161, 162, 163, 165, 185, 196, 204, 221, 229</td>
</tr>
<tr>
<td>Information unit</td>
<td>222</td>
</tr>
</tbody>
</table>
Analytical Balances

Protocol data for piece counting 231
Protocol header 87
 Define 87
Protocol information for density determination 157
Protocol information for differential weighing 204
Protocol information for percent weighing 222
Protocol printout 94
Pycnometer 153, 163

Q
Quick-Check 129

R
Reading angle 29
Recording 63
Reference optimization 237
Reference unit quantity 228, 234
Reference unit weight 234
Relative standard deviation 182
Release code 42
Releases the balance 52
Remaining range display
 Graphic remaining range display 79
Reminder 46, 106
Reminder function 63
Remote 64
Removing the terminal 30
Repeatability 44, 45, 105
Repeatability test 44, 105
Repeatability test with tare weight 45, 105
Reset to zero 270
Resolution 93
Result 155
RFID data 151
RFID tag 134
Routine test 39
RP1 method 44, 105
RPT1 method 45, 105
RS232C interface 255

S
Safety information 10
 General 10
 Intended use 10
 Staff safety 10
Sample 202, 207
Sample identification 207
Sample protocol of a formulation 201
Sample protocol of a percent weighing 226
Scope of delivery 22
Screen saver 16
SE1 method 46, 105
SE2 method 46, 106
Security system 20, 60
Selecting a series 210
Self-test 27
Sensitivity test 46, 47, 48, 105, 106, 107
Sensor 90, 121, 159, 189, 223, 233
Series 207
Series weighings 180
Service 47
SERVICE method 46, 106
SET1 method 47, 106
SET2 method 48, 107
Settings
 Adjustment 39
 System 36
 Tests 39
 User 65
Simple weighing 29
Sinker 161
SmartGrid 22
SmartGrid weighing pan 12
SmartGrid weighing pan
 SmartGrid 12
SmartSample 134
SmartSens 13, 90, 121, 159, 188, 223, 232
SmartTrac 15, 79, 97, 181, 197, 226, 237
SmartTrac dosing guide 79
Software update 241
Solids 153, 154
Spare Parts 268
Stability detector 29
Staff safety 10
Standard deviation 182
Standby mode 56
StaticDetect 91
Statistics 154, 166, 171
Statistics application 171, 178
Statistics function 154
Statistics recording 180
Status bar 72, 90, 121, 159, 189, 223, 233
Status icon 246
Status icons 15
Index

Analytical Balances

Status light 73
STD 75
Switching on the balance 29
Symbol 90, 121, 159, 189, 223, 233
Symbols 9
System settings 17, 36
T
Tare 219, 270
Tare memory 89, 94
Tare weight 47, 48, 94, 106, 107
Tare weights 89
Target weight 92
Taring 14, 29
Taring options 93
Task 50
Task status 50
Task status window 50
Tasks 49
Technical Data 248
Temperature criterion 99
Terminal 70
Test 38
Test history 54
Test Manager 38
Test records 101
Test report 56
Test Results 54
Test sequence 41, 47, 49, 50, 103
Test weight 40, 41, 43, 44, 46, 47, 48, 105, 106, 107
Weight 40
Testing the adjustment with an external test weight 53
Testing the adjustment with external test weight 101
Testing the adjustment with internal weight 100
Tests 39
Threshold 92
Time 15, 56
Titration 134
Titration application 134
Tolerance 43
Tolerance mode 97
Tolerances 52
Tolerances s 44, 45
Touch screen adjustment 72
Touch screen touch function 72
Touchscreen 15
Transfer key 84
Transport over long distances 32
Transport over short distances 32
Transporting the balance 32
U
Underload 242
Unit 155
Units of measurement 269
Unpacking the balance 21
User 60, 64, 68
User data 68
User ID 69
User name 68
User names 68
User password 69
User profile 14, 17, 65, 68, 73
User profiles 62, 64
User-specific settings 18, 65
V
Version number 41
W
Warning 48
Warning dialog 48
Warning mode 49
Weighing application 75, 93
Weighing mode 67
Weighing out 180
Weighing parameters 66
Weighing protocols 87, 188
Weighing result 73, 81, 93
Weighing results 98
Weighing unit 15, 81
Weighing with RFID 138
Weighing-in 96, 225
Weighing-in aid SmartTrac 97, 181, 197, 226, 237
Weight 40
Test weight 40
Weight value 15
Z
Zero point 29
Zeroing 14, 29
GWP®
Good Weighing Practice™

GWP® is the global weighing standard, ensuring consistent accuracy of weighing processes, applicable to all equipment from any manufacturer. It helps to:

- Choose the appropriate balance or scale
- Calibrate and operate your weighing equipment with security
- Comply with quality and compliance standards in laboratory and manufacturing

www.mt.com/GWP